98 research outputs found

    Formation, Manipulation, and Elasticity Measurement of a Nanometric Column of Water Molecules

    Full text link
    Nanometer-sized columns of condensed water molecules are created by an atomic-resolution force microscope operated in ambient conditions. Unusual stepwise decrease of the force gradient associated with the thin water bridge in the tip-substrate gap is observed during its stretch, exhibiting regularity in step heights (~0.5 N/m) and plateau lengths (~1 nm). Such "quantized" elasticity is indicative of the atomic-scale stick-slip at the tip-water interface. A thermodynamic-instability-induced rupture of the water meniscus (5-nm long and 2.6-nm wide) is also found. This work opens a high-resolution study of the structure and the interface dynamics of a nanometric aqueous column.Comment: 4 pages, 3 figure

    Orientational Ordering in Spatially Disordered Dipolar Systems

    Full text link
    This letter addresses basic questions concerning ferroelectric order in positionally disordered dipolar materials. Three models distinguished by dipole vectors which have one, two or three components are studied by computer simulation. Randomly frozen and dynamically disordered media are considered. It is shown that ferroelectric order is possible in spatially random systems, but that its existence is very sensitive to the dipole vector dimensionality and the motion of the medium. A physical analysis of our results provides significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from [email protected]

    Phase Coexistence of a Stockmayer Fluid in an Applied Field

    Full text link
    We examine two aspects of Stockmayer fluids which consists of point dipoles that additionally interact via an attractive Lennard-Jones potential. We perform Monte Carlo simulations to examine the effect of an applied field on the liquid-gas phase coexistence and show that a magnetic fluid phase does exist in the absence of an applied field. As part of the search for the magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase coexistence curves at large dipole moments, ÎĽ\mu. The critical temperature is found to depend linearly on ÎĽ2\mu^2 for intermediate values of ÎĽ\mu beyond the initial nonlinear behavior near ÎĽ=0\mu=0 and less than the ÎĽ\mu where no liquid-gas phase coexistence has been found. For phase coexistence in an applied field, the critical temperatures as a function of the applied field for two different ÎĽ\mu are mapped onto a single curve. The critical densities hardly change as a function of applied field. We also verify that in an applied field the liquid droplets within the two phase coexistence region become elongated in the direction of the field.Comment: 23 pages, ReVTeX, 7 figure

    Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems

    Full text link
    In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly discussed the existence and nature of ferroelectric order in positionally disordered dipolar materials. Here we report further results and give a complete description of our work. Simulations of randomly frozen and dynamically disordered dipolar soft spheres are used to study ferroelectric ordering in non-crystalline systems. We also give a physical interpretation of the simulation results in terms of short- and long-range interactions. Cases where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models, respectively) are considered. It is found that the Ising model displays ferroelectric phases in frozen amorphous systems, while the XY and XYZ models form dipolar glass phases at low temperatures. In the dynamically disordered model the equations of motion are decoupled such that particle translation is completely independent of the dipolar forces. These systems spontaneously develop long-range ferroelectric order at nonzero temperature despite the absence of any fined-tuned short-range spatial correlations favoring dipolar order. Furthermore, since this is a nonequilibrium model we find that the paraelectric to ferroelectric transition depends on the particle mass. For the XY and XYZ models, the critical temperatures extrapolate to zero as the mass of the particle becomes infinite, whereas, for the Ising model the critical temperature is almost independent of mass and coincides with the ferroelectric transition found for the randomly frozen system at the same density. Thus in the infinite mass limit the results of the frozen amorphous systems are recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed. Submitted to Phisical Review E. Contact: [email protected]

    Functional limit theorems for random regular graphs

    Full text link
    Consider d uniformly random permutation matrices on n labels. Consider the sum of these matrices along with their transposes. The total can be interpreted as the adjacency matrix of a random regular graph of degree 2d on n vertices. We consider limit theorems for various combinatorial and analytical properties of this graph (or the matrix) as n grows to infinity, either when d is kept fixed or grows slowly with n. In a suitable weak convergence framework, we prove that the (finite but growing in length) sequences of the number of short cycles and of cyclically non-backtracking walks converge to distributional limits. We estimate the total variation distance from the limit using Stein's method. As an application of these results we derive limits of linear functionals of the eigenvalues of the adjacency matrix. A key step in this latter derivation is an extension of the Kahn-Szemer\'edi argument for estimating the second largest eigenvalue for all values of d and n.Comment: Added Remark 27. 39 pages. To appear in Probability Theory and Related Field

    Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges

    Get PDF
    Nuclear quantum effects influence the structure and dynamics of hydrogen-bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory, and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water's properties. These have been combined with theoretical developments such as the introduction of the principle of competing quantum effects that allows the subtle interplay of water's quantum effects and their manifestation in experimental observables to be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water's isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in this area of research

    Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass

    Get PDF
    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu64.5Zr35.5 alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe “Bergman triacontahedron” packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals
    • …
    corecore