864 research outputs found
Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations
We present a detailed analysis of the zenith angle distributions of
atmospheric neutrino events observed in the Super-Kamiokande (SK) underground
experiment, assuming two-flavor and three-flavor oscillations (with one
dominant mass scale) among active neutrinos. In particular, we calculate the
five angular distributions associated to sub-GeV and multi-GeV \mu-like and
e-like events and to upward through-going muons, for a total of 30 accurately
computed observables (zenith bins). First we study how such observables vary
with the oscillation parameters, and then we perform a fit to the experimental
data as measured in SK for an exposure of 33 kTy (535 days). In the two-flavor
mixing case, we confirm the results of the SK Collaboration analysis, namely,
that \nu_\mu\nu_\tau oscillations are preferred over \nu_\mu\nu_e,
and that the no oscillation case is excluded with high confidence. In the
three-flavor mixing case, we perform our analysis with and without the
additional constraints imposed by the CHOOZ reactor experiment. In both cases,
the analysis favors a dominance of the \nu_\mu\nu_\tau channel. Without
the CHOOZ constraints, the amplitudes of the subdominant \nu_\munu_e and
\nu_e\nu_\tau transitions can also be relatively large, indicating that,
at present, current SK data do not exclude sizable \nu_e mixing by themselves.
After combining the CHOOZ and SK data, the amplitudes of the subdominant
transitions are constrained to be smaller, but they can still play a
nonnegligible role both in atmospheric and other neutrino oscillation searches.
In particular, we find that the \nu_e appearance probability expected in long
baseline experiments can reach the testable level of ~15%.Comment: 35 pages (RevTeX), including 20 ps figures (with epsfig.sty
Sensitivity of T2KK to the non-standard interaction in propagation
Assuming only the non-zero electron and tau neutrino components
, , of the non-standard
matter effect and postulating the atmospheric neutrino constraint
, we study the
sensitivity to the non-standard interaction in neutrino propagation of the T2KK
neutrino long-baseline experiment. It is shown that T2KK can constrain the
parameters , . It is
also shown that if and are large, then T2KK
can determine the Dirac phase and the phase of separately,
due to the information at the two baselines. We also provide an argument that
the components must be small for
the disappearance oscillation probability to be consistent with high-energy
atmospheric neutrino data, which justifies our premise that these quantities
are negligible.Comment: 29 pages, 25 figures, uses revtex4-1. Several places including typos
revised. New references adde
Oscillations of solar atmosphere neutrinos
The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic
ray interactions in the solar atmosphere. We study the impact of three-flavor
oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and
calculate their observable fluxes at Earth, as well as their event rates in a
kilometer-scale detector in water or ice. We find that peculiar three-flavor
oscillation effects in matter, which can occur in the energy range probed by
solar atmosphere neutrinos, are significantly suppressed by averaging over the
production region and over the neutrino and antineutrino components. In
particular, we find that the relation between the neutrino fluxes at the Sun
and at the Earth can be approximately expressed in terms of phase-averaged
``vacuum'' oscillations, dominated by a single mixing parameter (the angle
theta_23).Comment: v2: 11 pages, 8 eps figures. Content added (Sec. III D and Fig. 6),
references updated. Matches the published versio
Three-flavor solar neutrino oscillations with terrestrial neutrino constraints
We present an updated analysis of the current solar neutrino data in terms of
three-flavor oscillations, including the additional constraints coming from
terrestrial neutrino oscillation searches at the CHOOZ (reactor),
Super-Kamiokande (atmospheric), and KEK-to-Kamioka (accelerator) experiments.
The best fit is reached for the subcase of two-family mixing, and the
additional admixture with the third neutrino is severely limited. We discuss
the relevant features of the globally allowed regions in the oscillation
parameter space, as well as their impact on the amplitude of possible
CP-violation effects at future accelerator experiments and on the
reconstruction accuracy of the mass-mixing oscillation parameters at the
KamLAND reactor experiment.Comment: 10 pages + 8 figure
Day-night asymmetry of high and low energy solar neutrino events in Super-Kamiokande and in the Sudbury Neutrino Observatory
In the context of solar neutrino oscillations among active states, we briefly
discuss the current likelihood of Mikheyev-Smirnov-Wolfenstein (MSW) solutions
to the solar neutrino problem, which appear to be currently favored at large
mixing, where small Earth regeneration effects might still be observable in
Super-Kamiokande (SK) and in the Sudbury Neutrino Observatory (SNO). We point
out that, since such effects are larger at high (low) solar neutrino energies
for high (low) values of the mass square difference \delta m^2, it may be
useful to split the night-day rate asymmetry in two separate energy ranges. We
show that the difference \Delta of the night-day asymmetry at high and low
energy may help to discriminate the two large-mixing solutions at low and high
\delta m^2 through a sign test, both in SK and in SNO, provided that the
sensitivity to \Delta can reach the (sub)percent level.Comment: 6 pages (RevTeX) + 4 figures (PostScript). Final version, to appear
in Phys. Rev.
Testing the Isotropy of the Universe with Type Ia Supernovae
We analyze the magnitude-redshift data of type Ia supernovae included in the
Union and Union2 compilations in the framework of an anisotropic Bianchi type I
cosmological model and in the presence of a dark energy fluid with anisotropic
equation of state. We find that the amount of deviation from isotropy of the
equation of state of dark energy, the skewness \delta, and the present level of
anisotropy of the large-scale geometry of the Universe, the actual shear
\Sigma_0, are constrained in the ranges -0.16 < \delta < 0.12 and -0.012 <
\Sigma_0 < 0.012 (1\sigma C.L.) by Union2 data. Supernova data are then
compatible with a standard isotropic universe (\delta = \Sigma_0 = 0), but a
large level of anisotropy, both in the geometry of the Universe and in the
equation of state of dark energy, is allowed.Comment: 12 pages, 7 figures, 2 tables. Union2 analysis added. New references
added. To appear in Phys. Rev.
On Neutrinos and Fermionic Mass Patterns
Recent data on neutrino mass differences are consistent with a hierarchical
neutrino mass structure strikingly similar to what is observed for the other
fermionic masses.Comment: 8pages, 2figure
Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology
We reanalyze the recent data from the Liquid Scintillator Neutrino Detector
(LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This
indication is not completely excluded by the negative results of established
accelerator and reactor neutrino oscillation searches. We quantify the region
of compatibility by means of a thorough statistical analysis of all the
available data, assuming both two-flavor and three-flavor neutrino
oscillations. The implications for various theoretical scenarios and for future
oscillation searches are studied. The relaxation of the LSND constraints under
different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st
Minimal 3-3-1 model, lepton mixing and muonium-antimuonium conversion
The recent experimental results on neutrino oscillation and on
muonium-antimuonium conversion require extension of the minimal 3-3-1 model. We
review the constraints imposed to the model by those measurements and suggest a
pattern of leptonic mixing, with charged leptons in a non-diagonal basis, which
accounts for the neutrino physics and circumvents the tight muonium-antimuonium
bounds on the model. We also illustrate a scenario where this pattern could be
realized.Comment: 4 pages; abbreviated version, conclusions unchange
What can the SNO Neutral Current Rate teach us about the Solar Neutrino Anomaly
We investigate how the anticipated neutral current rate from will
sharpen our understanding of the solar neutrino anomaly. Quantitative analyses
are performed with representative values of this rate in the expected range of
. This would provide a signal for transition
into a state containing an active neutrino component. Assuming this state to be
purely active one can estimate both the neutrino flux and the
survival probability to a much higher precision than currently possible.
Finally the measured value of the rate will have profound implications for
the mass and mixing parameters of the solar neutrino oscillation solution.Comment: Brief discussion on the first NC result from SNO added; final version
to be published in the MPL
- …