34,045 research outputs found

    Soft Wilson lines in soft-collinear effective theory

    Full text link
    The effects of the soft gluon emission in hard scattering processes at the phase boundary are resummed in the soft-collinear effective theory (SCET). In SCET, the soft gluon emission is decoupled from the energetic collinear part, and is obtained by the vacuum expectation value of the soft Wilson-line operator. The form of the soft Wilson lines is universal in deep inelastic scattering, in the Drell-Yan process, in the jet production from e+e- collisions, and in the gamma* gamma* -> pi0 process, but its analytic structure is slightly different in each process. The anomalous dimensions of the soft Wilson-line operators for these processes are computed along the light-like path at leading order in SCET and to first order in alpha_s, and the renormalization group behavior of the soft Wilson lines is discussed.Comment: 36 pages, 10 figures, 3 table

    General moments of the inverse real Wishart distribution and orthogonal Weingarten functions

    Full text link
    Let WW be a random positive definite symmetric matrix distributed according to a real Wishart distribution and let W−1=(Wij)i,jW^{-1}=(W^{ij})_{i,j} be its inverse matrix. We compute general moments E[Wk1k2Wk3k4...Wk2n−1k2n]\mathbb{E} [W^{k_1 k_2} W^{k_3 k_4} ... W^{k_{2n-1}k_{2n}}] explicitly. To do so, we employ the orthogonal Weingarten function, which was recently introduced in the study for Haar-distributed orthogonal matrices. As applications, we give formulas for moments of traces of a Wishart matrix and its inverse.Comment: 29 pages. The last version differs from the published version, but it includes Appendi

    Hard-scattering factorization with heavy quarks: A general treatment

    Get PDF
    A detailed proof of hard scattering factorization is given with the inclusion of heavy quark masses. Although the proof is explicitly given for deep-inelastic scattering, the methods apply more generally The power-suppressed corrections to the factorization formula are uniformly suppressed by a power of \Lambda/Q, independently of the size of heavy quark masses, M, relative to Q.Comment: 52 pages. Version as published plus correction of misprint in Eq. (45

    Proton configurations in the hydrogen bonds of KH2PO4 as seen by resonant x-ray diffraction

    Full text link
    KH2PO4 (KDP) belongs to the class of hydrogen-bonded ferroelectrics, whose paraelectric to ferroelectric phase transition is driven by the ordering of the protons in the hydrogen bonds. We demonstrate that forbidden reflections of KDP, when measured at an x-ray absorption edge, are highly sensitive to the asymmetry of proton configurations. The change of average symmetry caused by the "freezing" of the protons during the phase transition is clearly evidenced. In the paraelectric phase, we identify in the resonant spectra of the forbidden reflections a contribution related to the transient proton configurations in the hydrogen bonds, which violates the high average symmetry of the sites of the resonant atoms. The analysis of the temperature dependence reveals a change of relative probabilities of the different proton configurations. They follow the Arrhenius law, and the activation energies of polar and Slater configurations are 18.6 and 7.3 meV, respectively

    Anyonic statistics with continuous variables

    Full text link
    We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, hence allowing for a highly efficient creation, manipulation, and detection of anyons. This approach extends our understanding of the control and application of anyons and it leads to the possibility for experimental proof-of-principle demonstrations of anyonic statistics using continuous-variable systems.Comment: 5 pages, 2 figures, appear in Phys. Rev.
    • …
    corecore