46,888 research outputs found

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    Configurable unitary transformations and linear logic gates using quantum memories

    Get PDF
    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favourable scaling with an increasing number of modes where N memories can be configured to implement an arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional CZ gate.Comment: 5 pages, 2 figure

    Storage and Manipulation of Light Using a Raman Gradient Echo Process

    Full text link
    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ\Lambda-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.Comment: 26 pages, 13 figure

    Comparison of the prognostic value of measures of the tumor inflammatory cell infiltrate and tumor-associated stroma in patients with primary operable colorectal cancer

    Get PDF
    The aim of the present study was to compare the clinical utility of two measures of the inflammatory cell infiltrate - a H&E-based assessment of the generalised inflammatory cell infiltrate (the Klintrup-Mäkinen (KM) grade), and an immunohistochemistry-based assessment of combined CD3+ and CD8+ T-cell density (the “Immunoscore”), in conjunction with assessment of the tumor stroma percentage (TSP) in patients undergoing resection of stage I-III colorectal cancer (CRC). 246 patients were identified from a prospectively maintained database of CRC resections in a single surgical unit. Assessment of KM grade and TSP was performed using full H&E sections. CD3+ and CD8+ T-cell density was assessed on full sections and the Immunoscore calculated. KM grade and Immunoscore were strongly associated (P<0.001). KM grade stratified cancer-specific survival (CSS) from 88% to 66% (P=0.002) and Immunoscore from 93% to 61% (P<0.001). Immunoscore further stratified survival of patients independent of KM grade from 94% (high KM, Im4) to 60% (low KM, Im0/1). Furthermore, TSP stratified survival of patients with a weak inflammatory cell infiltrate (low KM: from 75% to 47%; Im0/1: from 71% to 38%, both P<0.001) but not those with a strong inflammatory infiltrate. On multivariate analysis, only Immunoscore (HR 0.44, P<0.001) and TSP (HR 2.04, P<0.001) were independently associated with CSS. These results suggest that the prognostic value of an immunohistochemistry-based assessment of the inflammatory cell infiltrate is superior to H&E-based assessment in patients undergoing resection of stage I-III CRC. Furthermore, assessment of the tumor-associated stroma, using TSP, further improves prediction of outcome

    Shaking a Box of Sand

    Full text link
    We present a simple model of a vibrated box of sand, and discuss its dynamics in terms of two parameters reflecting static and dynamic disorder respectively. The fluidised, intermediate and frozen (`glassy') dynamical regimes are extensively probed by analysing the response of the packing fraction to steady, as well as cyclic, shaking, and indicators of the onset of a `glass transition' are analysed. In the `glassy' regime, our model is exactly solvable, and allows for the qualitative description of ageing phenomena in terms of two characteristic lengths; predictions are also made about the influence of grain shape anisotropy on ageing behaviour.Comment: Revised version. To appear in Europhysics Letter

    The Chemical Evolution of Helium in Globular Clusters: Implications for the Self-Pollution Scenario

    Get PDF
    We investigate the suggestion that there are stellar populations in some globular clusters with enhanced helium (Y from 0.28 to 0.40) compared to the primordial value. We assume that a previous generation of massive Asymptotic Giant Branch (AGB) stars have polluted the cluster. Two independent sets of AGB yields are used to follow the evolution of helium and CNO using a Salpeter initial mass function (IMF) and two top-heavy IMFs. In no case are we able to produce the postulated large Y ~ 0.35 without violating the observational constraint that the CNO content is nearly constant.Comment: accepted for publication in Ap

    The properties of the gamma-ray blazars in the CJ-F VLBI sample

    Get PDF
    We present first results from the analysis of multi-epoch VLBI observations of the EGRET detected sources [9] in the CJ-F sample (Caltech Jodrell-Flat-spectrum, [10]). These objects form a subsample of 14 sources within the 293 AGN of the full CJ-F sample. 5 GHz VLBI snapshot observations of the CJ-F sources are continuously being performed in order to create a valid database for thorough statistical tests of pc-scale jet motion in AGN. All gamma-bright CJ-F AGN have been observed at least twice with the VLBA, which enables us to investigate jet component motions and paths. In particular, we concentrate on the analysis of those properties supposed to be essential for gamma-ray production, i.e., superluminal motion and bending. A paper discussing the possible relation between morphological changes and gamma-ray flaring/production is in preparation
    • …
    corecore