9,396 research outputs found

    Letter from the Editors

    Full text link

    The Lyman Alpha Forest in Hierarchical Cosmologies

    Get PDF
    The comparison of quasar absorption spectra with numerically simulated spectra from hierarchical cosmological models of structure formation promises to be a valuable tool to discriminate among these models. We present simulation results for the column density, Doppler b parameter, and optical depth probability distributions for five popular cosmological models.Comment: 4 pages, 3 figures, uses aipproc.sty, to appear in the Proceedings of the 9th Annual October Astrophysics Conference in Maryland, "After the Dark Ages: When Galaxies Were Young (the Universe at 2<z<5)", ed. S. S. Holt and E. P. Smith, October 12-14, 199

    A Universal Temperature Profile for Galaxy Clusters

    Get PDF
    We investigate the predicted present-day temperature profiles of the hot, X-ray emitting gas in galaxy clusters for two cosmological models - a current best-guess LCDM model and standard cold dark matter (SCDM). Our numerically-simulated "catalogs" of clusters are derived from high-resolution (15/h kpc) simulations which make use of a sophisticated, Eulerian-based, Adaptive Mesh-Refinement (AMR) code that faithfully captures the shocks which are essential for correctly modelling cluster temperatures. We show that the temperature structure on Mpc-scales is highly complex and non-isothermal. However, the temperature profiles of the simulated LCDM and SCDM clusters are remarkably similar and drop-off as T+AFw−propto(1+−r/ax)−+AFw−deltaT +AFw-propto (1+-r/a_x)^{-+AFw-delta} where ax+AFw−simrvir/1.5a_x +AFw-sim r_{vir}/1.5 and +AFw−delta+AFw−sim1.6+AFw-delta +AFw-sim 1.6. This decrease is in good agreement with the observational results of Markevitch et al.(1998) but diverges, primarily in the innermost regions, from their fit which assumes a polytropic equation of state. Our result is also in good agreement with a recent sample of clusters observed by BeppoSAX though there is some indication of missing physics at small radii (r<0.2rvirr<0.2 r_{vir}). We discuss the interpretation of our results and make predictions for new x-ray observations that will extend to larger radii than previously possible. Finally, we show that, for r>0.2rvirr>0.2 r_{vir}, our universal temperature profile is consistent with our most recent simulations which include both radiative cooling and supernovae feedback.Comment: 8 pages, 6 figures, accepted for publication in ApJ, full-page version of Fig. 2 at http://www.cita.utoronto.ca/+AH4-cloken/PAPERS/UTP/f2.ep

    Explaining the entropy excess in clusters and groups of galaxies without additional heating

    Get PDF
    The X-ray luminosity and temperature of clusters and groups of galaxies do not scale in a self-similar manner. This has often been interpreted as a sign that the intracluster medium has been substantially heated by non-gravitational sources. In this paper, we propose a simple model which, instead, uses the properties of galaxy formation to explain the observations. Drawing on available observations, we show that there is evidence that the efficiency of galaxy formation was higher in groups than in clusters. If confirmed, this would deplete the low-entropy gas in groups, increase their central entropy and decrease their X-ray luminosity. A simple, empirical, hydrostatic model appears to match both the luminosity-temperature relation of clusters and properties of their internal structure as well.Comment: 5 pages, 4 figures, accepted in ApJL; added one reference, otherwise unchange

    The X-ray surface brightness distribution from diffuse gas

    Full text link
    We use simulations to predict the X-ray surface brightness distribution arising from hot, cosmologically distributed diffuse gas. The distribution is computed for two bands: 0.5-2 keV and 0.1-0.4 keV, using a cosmological-constant dominated cosmology that fits many other observations. We examine a number of numerical issues such as resolution, simulation volume and pixel size and show that the predicted mean background is sensitive to resolution such that higher resolution systematically increases the mean predicted background. Although this means that we can compute only lower bounds to the predicted level, these bounds are already quite restrictive. Since the observed extra-galactic X-ray background is mostly accounted for by compact sources, the amount of the observed background attributable to diffuse gas is tightly constrained. We show that without physical processes in addition to those included in the simulations (such as radiative cooling or non-gravitational heating), both bands exceed observational limits. In order to examine the effect of non-gravitational heating we explore a simple modeling of energy injection and show that substantial amounts of heating are required (i.e. 5 keV per particle when averaged over all baryons). Finally, we also compute the distribution of surface brightness on the sky and show that it has a well-resolved characteristic shape. This shape is substantially modified by non-gravitational heating and can be used as a probe of such energy injection.Comment: 11 pages, 11 figures, submitted to Ap

    Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    Get PDF
    Geimplanted with 1MeV Siâș at a dose of 1×10Âč⁔cm⁻ÂČ creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation Contract No. 00057787

    In vivo nuclear magnetic resonance imaging

    Get PDF
    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle

    Superconducting proximity effects in metals with a repulsive pairing interaction

    Full text link
    Studies of the superconducting proximity effect in normal conductor/superconductor (N/S)(N/S) junctions almost universally assume no effective electron-electron coupling in the NN region. While such an approximation leads to a simple description of the proximity effect, it is unclear how it could be rigorously justified. We reveal a much more complex picture of the proximity effect in N/SN/S bilayers, where SS is a clean s-wave BCS superconductor and NN is a simple metal with a repulsive effective electron coupling. We elucidate the proximity effect behavior using a highly accurate method to self-consistently solve the Bogoliubov-deGennes equations. We present our results for a wide range of values of the interface scattering, the Fermi wave vector mismatch, the temperature, and the ratio gg of the effective interaction strengths in the NN and SS region. We find that the repulsive interaction, represented by a negative gg, strongly alters the signatures of the proximity effect as can be seen in the spatial dependence of the Cooper pair amplitude and the pair potential, as well as in the local density of states near the interface.Comment: 12 pages, including 10 figures. To appear in Phys. Rev.
    • 

    corecore