287 research outputs found
Broadband noise decoherence in solid-state complex architectures
Broadband noise represents a severe limitation towards the implementation of
a solid-state quantum information processor. Considering common spectral forms,
we propose a classification of noise sources based on the effects produced
instead of on their microscopic origin. We illustrate a multi-stage approach to
broadband noise which systematically includes only the relevant information on
the environment, out of the huge parametrization needed for a microscopic
description. We apply this technique to a solid-state two-qubit gate in a fixed
coupling implementation scheme.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum
Informatio
Focused Crossed Andreev Reflection
We consider non-local transport in a system with one superconducting and two
normal metal terminals. Electron focusing by weak perpendicular magnetic fields
is shown to tune the ratio between crossed Andreev reflection (CAR) and
electron transfer (ET) in the non-local current response. Additionally,
electron focusing facilitates non-local signals between normal metal contacts
where the separation is as large as the mean free path rather than being
limited by the coherence length of the superconductor. CAR and ET can be
selectively enhanced by modulating the magnetic field
Dephasing by a nonstationary classical intermittent noise
We consider a new phenomenological model for a classical
intermittent noise and study its effects on the dephasing of a two-level
system. Within this model, the evolution of the relative phase between the
states is described as a continuous time random walk (CTRW). Using
renewal theory, we find exact expressions for the dephasing factor and identify
the physically relevant various regimes in terms of the coupling to the noise.
In particular, we point out the consequences of the non-stationarity and
pronounced non-Gaussian features of this noise, including some new anomalous
and aging dephasing scenarii.Comment: Submitted to Phys. Rev.
Decoherence times of universal two-qubit gates in the presence of broad-band noise
The controlled generation of entangled states of two quantum bits is a
fundamental step toward the implementation of a quantum information processor.
In nano-devices this operation is counteracted by the solid-state environment,
characterized by a broadband and non-monotonic power spectrum, often 1/f at low
frequencies. For single-qubit gates, incoherent processes due to fluctuations
acting on different time scales result in peculiar short- and long-time
behavior. Markovian noise gives rise to exponential decay with relaxation and
decoherence times, T1 and T2, simply related to the symmetry of the
qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at
low frequencies is instead responsible for defocusing processes and algebraic
short-time behavior. In this paper, we identify the relevant decoherence times
of an entangling operation due to the different decoherence channels
originating from solid-state noise. Entanglement is quantified by concurrence,
which we evaluate in an analytic form employing a multi-stage approach. The
'optimal' operating conditions of reduced sensitivity to noise sources are
identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for
experimental noise spectra.Comment: 35 pages, 11 figure
Effects of low-frequency noise cross-correlations in coupled superconducting qubits
We study the effects of correlated low frequency noise sources acting on a
two qubit gate in a fixed coupling scheme. A phenomenological model for the
spatial and cross-talk correlations is introduced. The decoherence inside the
SWAP subspace is analysed by combining analytic results based on the adiabatic
approximation and numerical simulations. Results critically depend on amplitude
of the low frequency noise with respect to the qubits coupling strength.
Correlations between noise sources induce qualitative different behaviors
depending on the values of the above parameters. The possibility to reduce
dephasing due to correlated low frequency noise by a recalibration protocol is
discussed.Comment: 18 pages, 7 figure
Interplay between pairing and exchange in small metallic dots
We study the effects of the mesoscopic fluctuations on the competition
between exchange and pairing interactions in ultrasmall metallic dots when the
mean level spacing is comparable or larger than the BCS pairing energy. Due to
mesoscopic fluctuations, the probability to have a non-zero spin ground state
may be non-vanishing and shows universal features related to both level
statistics and interaction. Sample to sample fluctuations of the renormalized
pairing are enlightened.Comment: 10 pages, 5 figure
A tutorial on optimal control and reinforcement learning methods for quantum technologies
Quantum Optimal Control is an established field of research which is necessary for the development of Quantum Technologies. In recent years, Machine Learning techniques have been proved useful to tackle a variety of quantum problems. In particular, Reinforcement Learning has been employed to address typical problems of control of quantum systems. In this tutorial we introduce the methods of Quantum Optimal Control and Reinforcement Learning by applying them to the problem of three-level population transfer. The jupyter notebooks to reproduce some of our results are open-sourced and available on github1
- …