7,567 research outputs found

    Transition Path Theory from Biased Simulations

    Full text link
    Transition Path Theory (TPT) provides a rigorous framework to investigate the dynamics of rare thermally activated transitions. In this theory, a central role is played by the forward committor function q^+(x), which provides the ideal reaction coordinate. Furthermore, the reactive dynamics and kinetics are fully characterized in terms of two time-independent scalar and vector distributions. In this work, we develop a scheme which enables all these ingredients of TPT to be efficiently computed using the short non-equilibrium trajectories generated by means of a specific combination of enhanced path sampling techniques. In particular, first, we further extend the recently introduced Self-Consistent Path Sampling (SCPS) algorithm in order to compute the committor q^+(x). Next, we show how this result can be exploited in order to define efficient algorithms which enable us to directly sample the transition path ensemble.Comment: Version accepted for publication in J. Chem. Phy

    Simulating Stochastic Dynamics Using Large Time Steps

    Get PDF
    We present a novel approach to investigate the long-time stochastic dynamics of multi-dimensional classical systems, in contact with a heat-bath. When the potential energy landscape is rugged, the kinetics displays a decoupling of short and long time scales and both Molecular Dynamics (MD) or Monte Carlo (MC) simulations are generally inefficient. Using a field theoretic approach, we perform analytically the average over the short-time stochastic fluctuations. This way, we obtain an effective theory, which generates the same long-time dynamics of the original theory, but has a lower time resolution power. Such an approach is used to develop an improved version of the MC algorithm, which is particularly suitable to investigate the dynamics of rare conformational transitions. In the specific case of molecular systems at room temperature, we show that elementary integration time steps used to simulate the effective theory can be chosen a factor ~100 larger than those used in the original theory. Our results are illustrated and tested on a simple system, characterized by a rugged energy landscape.Comment: 17 pager, 7 figure

    Quantum Diffusive Dynamics of Macromolecular Transitions

    Full text link
    We study the role of quantum fluctuations of atomic nuclei in the real-time dynamics of non-equilibrium macro-molecular transitions. To this goal we introduce an extension of the Dominant Reaction Pathways (DRP) formalism, in which the quantum corrections to the classical overdamped Langevin dynamics are rigorously taken into account to order h^2 . We first illustrate our approach in simple cases, and compare with the results of the instanton theory. Then we apply our method to study the C7_eq to C7_ax transition of alanine dipeptide. We find that the inclusion of quantum fluctuations can significantly modify the reaction mechanism for peptides. For example, the energy difference which is overcome along the most probable pathway is reduced by as much as 50%.Comment: Final version, to appear in the Journal of Chemical Physic

    Microscopically Computing Free-energy Profiles and Transition Path Time of Rare Macromolecular Transitions

    Full text link
    We introduce a rigorous method to microscopically compute the observables which characterize the thermodynamics and kinetics of rare macromolecular transitions for which it is possible to identify a priori a slow reaction coordinate. In order to sample the ensemble of statistically significant reaction pathways, we define a biased molecular dynamics (MD) in which barrier-crossing transitions are accelerated without introducing any unphysical external force. In contrast to other biased MD methods, in the present approach the systematic errors which are generated in order to accelerate the transition can be analytically calculated and therefore can be corrected for. This allows for a computationally efficient reconstruction of the free-energy profile as a function of the reaction coordinate and for the calculation of the corresponding diffusion coefficient. The transition path time can then be readily evaluated within the Dominant Reaction Pathways (DRP) approach. We illustrate and test this method by characterizing a thermally activated transition on a two-dimensional energy surface and the folding of a small protein fragment within a coarse-grained model.Comment: Accepted for publication in Physical Review
    corecore