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We present an approach to investigate the long-time stochastic dynamics of multidimensional classical
systems, in contact with a heat bath. When the potential energy landscape is rugged, the kinetics displays a
decoupling of short- and long-time scales and both molecular dynamics or Monte Carlo �MC� simulations are
generally inefficient. Using a field theoretic approach, we perform analytically the average over the short-time
stochastic fluctuations. This way, we obtain an effective theory, which generates the same long-time dynamics
of the original theory, but has a lower time-resolution power. Such an approach is used to develop an improved
version of the MC algorithm, which is particularly suitable to investigate the dynamics of rare conformational
transitions. In the specific case of molecular systems at room temperature, we show that elementary integration
time steps used to simulate the effective theory can be chosen a factor �100 larger than those used in the
original theory. Our results are illustrated and tested on a simple system, characterized by a rugged energy
landscape.
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I. INTRODUCTION

The investigation of a vast class of physical phenomena
requires the understanding of the long-time dynamics of
classical systems, in contact with a heat-bath. Examples in-
clude critical dynamics, molecular aggregation, and protein
folding, to name a few.

The most natural strategy to describe these processes is to
integrate numerically the equations of motion, i.e., to per-
form molecular dynamics �MD� simulations. Unfortunately,
when the number of degrees of freedom is very large, or in
the presence of large free energy barriers, MD approaches
become extremely costly �1�, or even impracticable. The
problem arises because the time scale associated with the
system’s local conformational changes can be many orders
of magnitude smaller that the time scales of the dynamics
one is interesting in studying. As a result, most of the com-
putational time is invested in simulating uninteresting ther-
mal oscillations.

This situation is exemplified in Fig. 1, where we show the
stochastic motion of a point particle, interacting with a two-
dimensional external potential. The solid line was obtained
by means of a MD simulation and illustrates how, at short-
time scales, the dynamics of this system is dominated by fast
modes associated to thermal diffusion. However, when the
evolution of the system is described using much lower time-
resolution power, the effect of such short-time thermal fluc-

tuations tends to average out and to become unimportant.
This is evident from the comparison between the solid line
and the dashed line, which was obtained by averaging over
blocks of consecutive frames in the original MD trajectory.
At long times, the dynamics of system is mostly sensitive to
the structure of the external energy landscape, which was
chosen to be spherically symmetric.

Clearly, an important question to ask is whether it is pos-
sible to develop theoretical/computational frameworks which
yield directly the correct long dynamics, but avoid investing
computational time in simulating the short-time thermal os-
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FIG. 1. �Color online� Langevin dynamics of a point particle in
a two-dimensional external potential. The solid line denotes the
result of an MD simulation. The dashed line is the result of aver-
aging over blocks of consecutive frames of the MD trajectory. Such
an average smooths out the trajectory.
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cillations. Mori-Zwanzig’s projection techniques represent a
powerful method to remove rapidly varying degrees of free-
dom, in large dimensional systems �2�. This method has been
also applied to average out fast degrees of freedom in small
systems exhibiting chaotic behavior �3�. A potential limita-
tion of such approaches is that they imply the a priori iden-
tification of the set of slowly varying degrees of freedom.

A promising alternative to projection techniques is repre-
sented by the approaches based on Markov state models
�5–7�. A potential difficulty of such approaches resides in
correct identification of the metastable states. In addition, for
each different system, one needs to perform a large set of
independent MD simulations in order to accurate calculation
of the rate coefficients.

In this work, we present an alternative approach to simu-
late the dynamics over long times. We develop a rigorous
effective theory which �i� yields by construction the correct
long dynamics and �ii� does not require to identify meta-
stable states, nor to evaluate the transition matrix by MD. We
rely on the path integral representation of the stochastic dy-
namics generated by the overdamped Langevin equation. A
pioneering analysis of the result of integrating out fast modes
from such a stochastic path integral was performed in �4�, in
the context of the study of phase synchronization, and with
an emphasis on the geometrical implications. In this work,
we are interested in constructing an efficient algorithm to
perform numerical simulation long-time dynamics. To this
goal, we use a field theory approach, based on renormaliza-
tion group �RG� ideas and on the notion of effective field
theory �8�. Such a powerful tools have been already success-
fully applied to describe the low-energy dynamics of a vast
variety of quantum and statistical systems characterized by a
separation of scales—see, e.g., �9,10�. To the best of our
knowledge, this method has never been applied to develop
an effective theory to efficiently simulate the long-time sto-
chastic dynamics of a system in contact with a heat bath.

The main idea of our approach is to exploit the decou-
pling of time scales in the system in order to define a pertur-
bative series, in which the expansion parameter is the ratio of
short-over large time scales. In such a perturbative frame-
work, the average over the short-time fluctuations can be
computed analytically, to any desired level of accuracy. The
average over the fast thermal oscillations gives rise to new
terms in the stochastic path integral, which represent correc-
tions both to the interaction and to the diffusion coefficient.
Such new terms implicitly take into account of the dynamics
of the fast degrees of freedom, which have been integrated
out from the system.

Once a finite number of such effective terms correspond-
ing to a given accuracy have been calculated analytically, it
is possible to simulate the dynamics of the system using
much larger time steps. By construction, in the regime of
decoupling of fast and slow modes, one is guaranteed that
the effective long-time theory generates the same probability
distributions of the underlying, more fundamental stochastic
theory. It is important to emphasize the fact that the present
approach is not equivalent to simply including higher-order
corrections in the Trotter expansion �11�. Indeed, the as-
sumption of decoupling of time scales leads to further sim-
plifications with respect to such an approach.

The paper is organized as follows. In Sec. II, we review
the path integral formulation of the Langevin dynamics and
we outline the formal connection between stochastic dynam-
ics and evolution of a quantum particle in imaginary time.
Such a connection is used in Sec. III to identify and isolate
the dynamics of the fast degrees of freedom. In Secs. IV and
V we present our perturbative scheme which allows to inte-
grate out the fast modes and derive the effective interactions
and diffusion coefficients. In Sec. VI we discuss how the
effective theory for the dynamics at long-time scales can be
simulated using the diffusion MC algorithm, which is briefly
reviewed in Appendix B. Section VII is devoted to simple
examples, which illustrate how this method works in prac-
tice. In Sec. VIII we discuss the applicability of the present
approach to simulate the Langevin dynamics of molecular
systems. Results and conclusions are summarized in Sec. IX.

II. LANGEVIN DYNAMICS

We consider a system defined by a stochastic
d-dimensional variable x obeying the Langevin equation,

mẍ = − �U�x� − �ẋ + ��t� , �1�

where U�x� is a potential energy function, m is the mass, � is
the friction coefficient and ��t� is a �-correlated Gaussian
noise. In many molecular systems of interest, the accelera-
tion term mẍ is damped at time scales of the order 10−13 s,
which much smaller than the time scale associated to local
conformational changes. If such a term is dropped one ob-
tains the so-called overdamped or velocity Langevin equa-
tion,

ẋ = −
1

�
� U�x� + ��t� , �2�

where ��t� is a rescaled delta-correlated Gaussian noise, sat-
isfying the fluctuation-dissipation relationship,

���t����t�� = 2d
1

��
��t − t�� . �3�

The overdamped Langevin equation defines a Markovian
process. The probability distribution P�x , t� generated by
such a stochastic differential equation obeys the Fokker-
Planck equation,

�

�t
P�x,t� =

1

��
� ��P�x,t� + � � U�x�P�x,t�� . �4�

By performing the substitution

P�x,t� = exp�−
�

2
U�x�	��x,t� �5�

the Fokker-Planck Eq. �4� can be recast in the form of a
Schrödinger equation in imaginary time,

−
�

�t
��x,t� = Ĥef f��x,t� , �6�

where the effective “quantum Hamiltonian” operator reads
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Ĥef f = −
1

��
�2 + �Vef f�x� , �7�

and Vef f�x� is called the effective potential and reads

Vef f�x� =
1

4�

��U�x��2 −

2

�
�2U�x�� . �8�

Hence, the problem of studying the diffusion of a classical
particle can be mapped into the problem of determining the
quantum-mechanical propagation in imaginary time of a vir-
tual system, defined by the effective quantum Hamiltonian
�7�, interacting with the effective potential Vef f�x�.

Let G�xf , tf �xi� be the Green’s function of the Fokker-
Planck operator, subject to initial condition x�0�=xi, i.e.,

�

�t
G�xf,t�xi� −

1

��
� ��G�xf,t�xi� + � � UG�xf,t�xi��

= ��t���xf − xi� . �9�

The interpretation of such a Green’s function is the probabil-
ity for the system to be in xf at t, conditioned to start from xi
at the initial time. Formally, such a conditional probability
can be related to the “quantum” propagator of the effective
Hamiltonian �7�,

G�x,t�xi� = exp�−
�

2
�U�x� − U�xi��	K�x,t�xi� , �10�

K�x,t�xi� = �x�e−tHef f�xi� . �11�

Hence, it is immediate to derive a path integral representa-
tion of the Green’s function G�x , t �xi�,

G�x,t�xi� = e−�/2„U�x�−U�xi�…
x�ti�=xi

x�t�=x

Dxe−�Sef f�x�, �12�

where Sef f�x� is the effective “action,”

Sef f�x� = 
0

t

d���

4
ẋ2 + Vef f�x�� . �13�

The prefactor e−�/2(U�x�−U�xi�) in Eq. �11� can be transformed
away, noticing that dU�x�

d� = ẋU��x�. One than obtains a path
integral in which the statistical weight contains the Onsager-
Machlup functional

G�x,t�xi� = 
x�0�=xi

x�t�=x

Dx exp − �
0

t

d���

4
ẋ2 +

1

2
ẋU��x�

+ Vef f�x�	 . �14�

We note that as long as Eqs. �12�, �13�, and �8� are written in
the continuum limit, they are independent on the prescription
adopted to define the time derivative in the original Langevin
Eq. �2�—see, e.g., the discussion in �16�. On the other hand,
the dependence on the choice of the stochastic calculus ap-
pears after the time variable is discretized. In the present
work we consider the discretized definition of the effective
action functional,

Sef f�x� = 	��
n=0

N−1
�

4
� xn+1 − xn

	�
�2

+
1

4�

��U�xn��2

−
2

�
�2U�xn�� , �15�

which corresponds to the Stratonovich midpoint prescription.
Equation �12� provides an expression for the conditional

probability in terms of the microscopic stochastic dynamics
governing the system. It represents the starting point of the
dominant reaction pathway approach �12–15�, which deals
with the problem of finding the most probable transition
pathways between the given configurations xi and xf, which
are visited at the initial and final time x�t�=xf , x�0�=xi, re-
spectively.

On the other hand, in this work we are interested in the
corresponding initial value problem, i.e., we want to develop
an effective theory which yields directly the long-time evo-
lution of the probability density P�x , t�, solution of Eq. �4�,
starting from a given initial probability density P�x , t=0�
=
0�x�. The probability density P�x , t�, the Green’s function
G�xf , t �xi , ti� and the initial distribution 
0�x� are related by
the equation,

P�x,t� = dyG�x,t�y�
0�y� . �16�

Hence, for positive time intervals, the conditional probability
G�x , t �xi� can be considered as the propagator associated to
the stochastic Fokker-Planck Eq. �4�.

III. SEPARATION OF FAST AND SLOW MODES

Without loss of generality, let us focus on the stochastic
path integral �Eq. �12��, with periodic boundary conditions,

Z�t� �  dxG�x,t�x,0�

=� Dx exp�− �
0

t

d���

4
ẋ2 + Vef f�x��	 . �17�

We observe that the inverse temperature 1
� plays the role of

�, in the analogy with the quantum-mechanical formalism.
Hence, the loop expansion of the path integral �Eq. �17��
generates an expansion in powers of 1

� .
Let us introduce the Fourier conjugate,

x̃��n� =
1

t


0

t

d� exp�− i�nt�x��� , �18�

x��� = x�� + t� = �
n

x̃��n�exp�i�nt� , �19�

where �n are the Matsubara frequencies,

�n =
2

t
n, n = 0, � 1, � 2, . . . . �20�

In numerical simulations, the integration of the over-
damped Langevin equation is performed by choosing a finite
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elementary time step 	t. In frequency space, this implies the
existence of an ultraviolet cutoff �, which is inversely pro-
portional to 	t,

� �
2

	t
. �21�

Such a relationship becomes a strict equality in the case of
periodic boundary conditions, as in Eq. �17�. In general,
when the boundary conditions are not periodic, it represents
just an order-of-magnitude estimate of the largest Fourier
frequencies, which are associated to a given choice of the
integration time step 	t.

Let us now introduce a parameter 0�b�1 and split the
frequency interval �0,�� as �0,b��� �b� ,��. Then the
Fourier decomposition of a path contributing to Eq. �17� can
be split as

x�t� = x��t� + x��t� , �22�

where x��t� and x��t� will be referred to as the slow and fast
modes, respectively,

x��t� = �
��n��b�

x̃��n�ei�nt, �23�

x��t� = �
b����n���

x̃��n�ei�nt. �24�

The main purpose of this work is to develop a perturbation
series to systematically integrate out from the path integral
the modes with frequencies �n�b�. To this end, we begin
by rewriting the “kinetic” term which appears in the effective
action �13� of the path integral �Eq. �12�� as a sum of the
kinetic energy of slow and fast modes,

�

4


0

t

d�ẋ2 =
t�

4 �
��n���

�n
2x̃��n�x̃�− �n�

=
�

4


0

t

d�ẋ�
2 ��� +

�t

4 �
��n��Sb

�n
2x̃��n�x̃�− �n� ,

�25�

where Sb denotes the shell of hard modes Sb= �b� ,��.
Let us now consider the potential term and expand around

the slow modes x��t�,

Vef f�x���� = Vef f�x����� +
�Vef f�x�����

�xi x�
i ���

+
1

2

�2Vef f�x�����
�xixj x�

i ���x�
j ��� + O�x�

3 � �26�

The complete path integral �Eq. �17�� can be split in the
following way:

Z�t� =� Dx�� Dx�e−�Sef f�x��t�+x��t��

� � Dx�e−�Sef f�x��t��e−�S��x�����. �27�

In this expression, the action functional Sef f is evaluated on

the slow modes only and depends on the original effective
potential Vef f �which we also shall refer to as the “tree-level”
effective potential�. S��x����� is a correction term action
which accounts for the dynamics of the fast modes which are
integrated out,

e−�S��x����� � � Dx� exp�−
��t

4 �
��n��Sb

�n
2x̃��n�x̃�− �n�

− �Sint	 , �28�

where the Sint is an effective interaction term. In such an
equation, the integration over the hard modes is performed in
Fourier space,

Dx� � �
��n��Sb

dx̃��n� . �29�

Equation �27� is formally exact. In the next section, we
evaluate the effective action S��x����� perturbatively. The
effective interaction which includes the correction coming
from S��x�� will be referred to as the renormalized effective
interaction.

IV. RENORMALIZED EFFECTIVE INTERACTION

In the previous section, we have seen that the integration
over the fast modes generates an additional term in the ef-
fective action for the slow modes,

Z�t� � � Dx�e�−�Sef f�x��t���−�S��x�����, �30�

where

e−�S��x����� =� Dx�e−�t���n��Sb
���n

2/4�x̃��n�x̃�−�n�e−�Sint.

�31�

In this section we formally perform such an integration.
We begin by rewriting e−�S��x����� as

e−�S��x����� = �e−�Sint�0, �32�

where the notation � · �0 denotes the expectation value evalu-
ated in the free theory

S�
0 �x�� = t �

��n��Sb

��n
2

4
x̃��n�x̃�− �n� . �33�

To evaluate the matrix element �e−�Sint�, we represent the
e−�Sint “operator” by its power series,

CORRADINI, FACCIOLI, AND ORLAND PHYSICAL REVIEW E 80, 061112 �2009�

061112-4



�e−�Sint�0 = �
k

1

k!
��− �Sint�k�0

=
1

Z�
0  Dx��

k

1

k!
�− �Sint�ke−�S�

0
. �34�

Next, we expand the interaction action Sint�x�+x�� around
the slow modes,1

− �Sint�x� + x�� = − �
0

t

d�
�Vef f�x�����

�xi x����

− �
1

2


0

t

d�
�2Vef f�x�����

�xixj x�
i ���x�

j ��� + ¯

= − �
0

t

d��
k

1

k!
Vi1,. . .,ik

���x�
i1��� . . . x�

ik ��� ,

�35�

where Vi1,. . .,ik
���x�

i1��� . . .x�
ik ��� are vertices with couplings

Vi1,. . .,ik
��� �

�kVef f�x�����
�xi1 . . . �xik

. �36�

Notice that each term in the perturbative expansion �35� gen-
erates a new vertex, with an increasing power of the x����
field. The couplings to the fast modes depend implicitly on
the time �, through the slow modes x����.

By Wick theorem, each term in the series �34� can be
related to a Feynman graph with vertexes given by Eq. �36�
and propagators given by—see Appendix A,

�x�
i ��1�x�

j ��2��0 = �
��m�,��n��Sb

G�
0ij��n,�m�ei��m�1+�n�2�

= �
��n��Sb

�ij
2

��t�n
2ei�m��2−�1�. �37�

The expansion �34� can be reorganized as the exponent of
the sum performed over only connected diagrams,

e−�S��x����� = e�sum over all connected diagrams�. �38�

Hence, the path integral �Eq. �27�� for the slow modes can be
given the following exact diagrammatic representation:

Z�t� � � Dx�e�−�Sef f�x��t���+�sum over all connected diagrams�.

�39�

Below we give a classification of all the connected diagrams
that may give a contribution to the expansion above. First
note that all diagrams that involve an odd numbers of fast
field vanish thanks to the Wick theorem. We are thus left
with the following sets of, a priori nonvanishing, diagrams:

�i� One-particle-reducible 1PR diagrams, namely, dia-
grams that can be topologically separated into two distinct
subdiagrams by cutting one internal fast-mode line �propaga-

tor�: they have the topology of a dumbbell. The simplest
examples of dumbbell diagrams are depicted in the upper
part of Fig. 2.

The main assumption of this work is the existence of a
gap between slow modes and fast modes. Under such as-
sumption all the 1PR diagrams give vanishing contributions.
From the physical point of view, this can be understood as a
consequence of energy conservation: in order for the total
energy flowing through a vertex with a single hard mode to
be conserved, at least one of the external modes has to be
hard. On the other hand, our working assumption implies
that all the modes in the external legs of diagrams are soft.
This result can be rigorously proven for all 1PR. As an ex-
ample, we explicitly compute the upper left diagram of Fig.
2. We have

1

2!
�−

�

2!
�2

0

t

d�1
0

t

d�2Vi�x���1��Vj�x���2��

� �
��n��Sb

2

��t

ei�n��2−�1�

�n
2 �ij . �40�

We note that the effective potentials depend smoothly on
time, through the periodic functions x�

i ���. Hence, the terms
Vi�x���1�� and Vj�x���2�� in Eq. �40� can be expressed in
terms of their Fourier transform,

Vi�x���1�� = �
n

Ṽi��n�ei�n�1, �41�

Vj�x���2�� = �
m

Ṽj��m�ei�m�2. �42�

This allows to perform the time integrals, which simply yield
t2��n+�n,0��n−�m,0. Due to such delta functions, only hard �
modes survives, which are projected in a term

� �
��n��Sb

�t

4��n
2

1

�n
2 Ṽi��n�Ṽi�− �n� � 0. �43�

These modes thus yield negligible contributions under the
physical assumption of large separation of frequency scales.
On the other hand, if one does not assume a separation of
time scale, this diagram gives finite contribution and has to
be accounted for. Note that this term has the same structure
as the first correction which appears when one performs
higher-order Trotter expansion �11�.

It is not difficult to check that such result holds for all
1PR diagrams, so that we can reduce our effective action to
the sum of one-particle-irreducible diagrams, i.e., diagrams
that cannot be disconnected by cutting a single internal line.
They can be classified in two main groups:

�i� 1PI “daisy” diagrams, namely diagrams with a single
vertex. Such diagrams only involve equal-time hard propa-
gators and only give rise to contributions to the renormalized
effective action which are local in time: they have the topol-
ogy of a daisy, hence the name. Examples of daisy diagrams
are depicted in the middle part of Fig. 2. It is not difficult to
compute a generic daisy diagram with K petals �propaga-
tors�. It is due to the vertex with 2K hard fields and reads

1Throughout all this work, we shall adopt Einstein notation, i.e.,
the summation over repeated indexes is implicitly assumed.
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�2K − 1� ! ! �−
�

�2K�!	0

t

d�	KVef f�x�����

�� 2

��t
�

��n��Sb

1

�n
2�K

, �44�

where 	��ij�i� j is the Laplacian operator, and the numerical
factor in front is a combinatorial factor. The sum, i.e., the
equal-time propagator, can be easily performed by taking the
continuum limit ��→ t

2�d� that simply yields2

1

t
�

��n��Sb

1

�n
2p →

1




b�

� d�

�2p =
1

�2p − 1�
1 − b2p−1

�b��2p−1 , �45�

so that we finally obtain

�−
�

K!
��D



1 − b

b�
�K

0

t

d�	KVef f�x����� , �46�

where we have reinstated the diffusion coefficient D=1 /��.
Hence, one can even formally resum all the daisy diagrams
into the compact expression,

� daisy diagrams = − �
0

t

d� exp�D



1 − b

b�
	�Vef f�x����� .

�47�

�i� 1PI nondaisy diagrams: all other nonlocal diagrams. The
simplest examples of such diagrams are depicted in the lower
part of Fig. 2. These diagrams generate contributions to the
renormalized effective action that are nonlocal in time and
give rise to infinite series of local diagrams. For example, the
evaluation of the lower left diagram of Fig. 2 yields a con-
tribution of the form,

2 �
1

2!
�−

�

2!
�2

0

t

d�1
0

t

d�2Vij�x���1��Vkl�x���2��

� �
��n�,��m��Sb

� 2

��t
�2ei��n+�m���2−�1�

�n
2�m

2 �ik� jl, �48�

where the 2 in front is a combinatorial factor. After Fourier
transforming the potentials �see discussion below Eq. �40��,
the integrals over times yield t2��m+�n+�n,0��m+�n−�m,0. Hence,

1

�2�
�n

�
��n��Sb

Ṽij��n�Ṽij�− �n�
1

�n
2

1

��n − �n�2 . �49�

Now we again make use of the assumption that slow modes
and fast modes of physical processes under study are sepa-
rated by a large gap. Under such assumption we can safely
expand the second fraction in the latter expression in power
series of slow modes �n and rewrite Eq. �49� as higher-time-
derivative expansion. Let us reintroduce the integral over
time as 1= 1

t �0
t d���m

ei��n+�m�� so that powers of �n can be
traded with time derivative of the potential �note that odd
powers vanish upon symmetric sum; in fact they would give
rise to total time-derivative terms that are zero upon integra-
tion thanks to periodicity in time.� We are thus left with

1

�2
0

t

d�Vij�x������1

t
�

��n��Sb

1

�n
4 +

3

t
�

��n��Sb

1

�n
6 �− ��

2�

+
5

t
�

��n��Sb

1

�n
8��

4 + ¯	Vij�x����� . �50�

Sums over hard frequencies can be performed in the con-
tinuum limit with the help of formula �45� and time deriva-
tives can be partially integrated in order to rewrite the latter
in a more symmetric form

1

�2
0

t

d�
1

3

1 − b3

�b��3 �Vij�x���2 +
3

5

1 − b5

�b��5 �Vijl�x��ẋ�
k ����2

+
5

7

1 − b7

�b��7 �Vijlm�x��ẋ�
l ���ẋ�

m����2 + ¯� . �51�

The infinite higher-derivative expansion is the legacy of
nonlocality in time: such an expansion can be diagrammati-
cally represented as an infinite sum of local �daisylike� dia-
grams, as depicted in Fig. 3.

It is intuitive to expect that, in the presence of decoupling
low and high frequency modes, the higher-derivative terms
should be suppressed. In the next section, we shall generalize
this statement and present a quantitative method to system-
atically organize all contributions of the effective action in
terms of a perturbative series.

V. SLOW-MODE PERTURBATION THEORY

The diagrammatic representation of the path integral
given by Eq. �39� is formally exact, but rather useless. In
fact, it is obviously impossible to evaluate and resum exactly
all the infinitely many Feynman graphs appearing in the ex-
ponent. On the other hand, in this section we show that it is

2Here for later use we consider a generic even power 2p. It is easy
to check that the error one makes in considering the continuum
limit is of order 1

�1−b�N with N��t /2.

V2

V1 V3

V4(1PI−nD):

V1 V1

V2 V6(1PI−D):

V2 V2

(1PR):

FIG. 2. Examples of connected graphs appearing in the expo-
nent of Eq. �39�. The diagrams on the upper part �dumbbell dia-
grams� are one-particle reducible, while those in the middle and in
the bottom are one-particle-irreducible. In particular, those in the
middle �daisy diagram� are local in time.
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possible to compute the renormalized effective action
�Sef f�x��t�� to an arbitrary level of precision, by calculating
only a finite number of Feynman graphs. This way, the low-
frequency effective theory retains predictive power.

The idea is to exploit the decoupling of the short-time
dynamics from the long-time dynamics to organize the sum
over all possible graphs as a perturbative expansion. We shall
refer to such a systematic evaluation of the renormalized
low-frequency effective action as to the slow-mode perturba-
tion theory.

The first step in the construction of our perturbation series
is to identify all the dimensionless combinations of the
physical quantities which appear in the Feynman graphs con-
tributing to Eq. �39�, evaluated in stationary phase approxi-
mation. Let us first define the quantities

V̄ �
1

t �0

t

d�V�, V̄2m
k �

1

tV̄
�

0

t

d�	mV� � k2m,

V̄2m
� �

1

tV̄2


0

t

d����
mV�2 � ��

2m, �52�

where k is the typical wave vector on the spatial Fourier
transform of Vef f�x� and �� is the typical frequency in tem-
poral Fourier transform of Vef f�x�����.

Using these combinations, we can thus construct the fol-
lowing dimensionless combinations:

�1 �
�V̄

b�
, �2 �

k2D

b�
, �3 �

��

b�
. �53�

We are interested in describing the dynamics of physical sys-
tems for which each of these parameters can be considered
small. In order to illustrate the physical interpretation of the
condition �1�1, we observe that the probability for the sys-
tem to remain in the same configuration x, during an elemen-
tary time interval dt is

P�x,t + dt�x,t� �
1

�dt�d/2e−�Vef f�x�dt. �54�

Hence, the combination �Vef f represents3 the typical time
scale associated to local conformational changes, and the
condition �1�1 expresses the condition that the time spent
on average by the system in each configuration is large com-
pared to the elementary short-time scale, dt� 1

b� .

The condition �2�1 implies that the effective potential
varies over length scales which are large, compared with the
mean distance covered by Brownian motion in an elementary
time interval dt. Finally, the condition �3�1 implies that the
typical slow-mode frequencies are small compared to the ul-
traviolet cutoff, which is of the order of the inverse of the
elementary time interval dt.

It is easy to see that any local diagram in the expansion of
the renormalized effective action comes about with integer
powers of these coefficients, when compared to the tree-level
effective action. In particular, any diagram composed by r
vertices of M1 , . . . ,Mr hard fields will involve M =�i=1

r Mi

spatial derivatives and M
2 propagators each of which yields a

power of 1
b� . Finally, each additional vertex yields a power

of �V̄ and each time derivative yields a power of �. So, the
above diagram, at the lowest level in time derivatives will be
of order �1

r−1�2
M/2 with respect to the tree-level expression.

Higher time derivative terms will add powers �3. It is thus
natural to define a degree of slowness L for a local diagram,
given by

L�Feynman diagram� = Nv − 1 + N� +
Nx

2
, �55�

where Nv is the number of vertices, N� the number of time
derivatives and Nx the number of spatial derivatives. The
definition in Eq. �55� is normalized in such a way that
L�tree�=0.

It is easy to check that the degree of slowness L corre-
sponds to the power of 1

b� of the local diagrams. Note also

3Notice that, in the small temperature limit, Vef f�x� becomes posi-
tive definite. Thus, P�x , t+dt �x , t� decays exponentially with �Vef f

in the time interval dt.

(L=1)

(L=2) V4

(L=3)

V2

V2 V2V6

V1V1

FIG. 4. Examples of the diagrams with the lowest degree of
slowness, up to L=3.

V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
...

x

x x

x

x

x x
x

xx

x

x

FIG. 3. Diagrammatic representation of the local time-derivative expansion of a nonlocal diagram—Eq. �51�. Solid lines are fast-mode
propagators, while dashed lines represent a single time derivative acting on the corresponding vertex function.
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that for daisy diagrams and for all other diagrams where
N�=0, the degree L is nothing but the number of loops. One
can thus easily write down and compute the finite set of local
diagrams that renormalize the effective action up to a fixed
�yet arbitrary� level of precision Lmax. Let us consider a few
simple examples.

�i� L�1 corresponds to a single daisy diagram with L
=1, Nv=1 and Nx=2, represented in the left panel of Fig. 4.
The expression of this diagram is given by Eq. �46� and
gives a correction to the effective action of the form

S��x�;L � 1� =
D



1 − b

b�


0

t

d�	Vef f�x����� . �56�

�i� L�2 corresponds to two further diagrams, one daisy dia-
grams with either Nx=4 and the two-vertex local diagram
with Nx=2 and no time derivatives. This latter however is

1PR and gives no contribution. We are thus left with the
corrections

S��x�;L � 2� =
D



1 − b

b�


0

t

d�	Vef f�x�����

+
1

2
�D



1 − b

b�
�2

0

t

d�	2Vef f�x����� �57�

�ii� L�3 corresponds to two further diagrams, one daisy
diagrams with Nx=6 and the two-vertex local diagram with
Nx=4 and no time derivatives. This latter can be simply read
off from Eq. �51�. Hence

S��x�;L � 3� =
D



1 − b

b�


0

t

d�	Vef f�x����� +
1

2!
�D



1 − b

b�
�2

0

t

d�	2Vef f�x�����
1

3!
�D



1 − b

b�
�3

0

t

d�	3Vef f�x�����

−
�D2

3

1 − b3

�b��3
0

t

d���i� jVef f�x������2 �58�

that involves in the last term the trace of the square of Hes-
sian of the tree-level potential ��i� jV�x���2=Tr HV

2 . In order
to see the first time derivatives appearing into the renormal-
ized effective action we need to consider L�5 where, along
with several other corrections, we have the correction com-
ing from the second term in Eq. �51� that yields

−
3�D2

5

1 − b5

�b��5
0

t

d� Tr ḢV
2 �59�

that can be also recast as a correction of the kinetic action

��
0

t

d��1

4
�kl −

3�2D3

5

1 − b5

�b��5�i� j�kV�i� j�lV	ẋkẋl. �60�

Some comments on the results obtained in this section are
in order. First of all, we emphasize that the effective interac-
tions have been derived under the assumption that the modes
which are relevant for the long-time dynamics vary over time
scales much longer than that of the fast modes, which enter
in the loop diagrams. This is the crucial assumption of all
renormalization group approaches. Our results confirm the
intuitive picture that if one adopts a low “time-resolution
power,” then the effective interactions generated by the ul-
traviolet modes can be regarded as instantaneous. This is in
fact general property of renormalization group theory, which
is preserved to any order in the perturbative expansion. Fi-
nally, we note that the correction terms generated by the
integration over the fast modes are suppressed, in the small
temperature limit.

VI. RENORMALIZATION GROUP IMPROVED
MONTE CARLO

The usefulness of the renormalization procedure resides
in the fact that it gives rise to an effective theory, in which
the largest frequency scale is lowered form � to b�. Equiva-
lently, the shortest time scale is increased form 	t to 1

b	t. By
construction, in the regime of decoupling of fast and slow
modes, the probability density generated by the new slow-
mode effective theory must be the same as that of the origi-
nal �i.e., tree-level� theory. In this section, we show how it is
possible to use the slow-mode effective theory to develop
improved MC algorithms for the time evolution of the prob-
ability density P�x , t�, in which the elementary time step
used to propagate the configurations is increased by a factor
1 /b.

The starting point of the MC approach �17� is to write the
probability of observing the system in configuration x at time
t in terms of the Green’s function of the Fokker-Planck equa-
tion G�x , t �xi , ti�,

P�x,t� = dxiG�x,t�xi,ti�
0�xi� , �61�

where 
0�y� is the density of states at the initial time.
One then uses Trotter’s formula to write the transition

probability as a sequence of intermediate elementary propa-
gation steps,
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P�x,t� = �
k=0

N−1

dykG�yk+1,tk+1�yk,tk�
0�xi� �y0 = xi, yN = x� .

�62�

If a sufficiently large number of intermediate steps N is
adopted, then the time steps 	t= tk+1− tk can be considered
infinitesimal and the �un-normalized� transition probability
G�yk+1 , tk+1 �yk , tk� can be calculated analytically.

G�y + dy,t + 	t�y,t�

= const. � e−����/4��dy/	t�2	t+�1/2��dy/	t�·�U�y��	te−�Vef f�y�	t.

�63�

“Completing the square” in the first exponent, one finds

G�y+dy,t+	t�y,t�

=const.�e−�1/4D	t��dy + �	t/�� � U�y��2+��/4����U�2	te−�Vef f�y�	t.

�64�

Now and recalling the definition of the effective potential
�Eq. �8�� in the second exponent, this Green’s function can
be written as

G�y + dy,t + 	t�y,t�

= const. � e−�1/4D	t��dy + �	t/�� � U�y��2
e�1/2���2U�y�	t

�65�

In the MC algorithm, one starts from a set of initial sys-
tem’s configurations, sampled according to he distribution

0�xi�. Such an ensemble is evolved in time, according to the
following procedure. Each configuration is propagated for an
elementary time interval 	t, by sampling from the Gaussian

e−�1/4D	t��dy + �	t/�� � U�y��2
�66�

in Eq. �65�. Such a configuration is then reweighted accord-
ing to the factor

W�y� = e�1/2���2U�y�	t. �67�

The iteration of such a procedure for many consecutive el-
ementary propagations gives rise to a set of diffusive trajec-
tories, called walkers. In the so-called diffusion MC algo-
rithm, the term W is used to replicate or annihilate the
walkers. The ensemble of configurations obtained according
to this procedure is distributed according to the probability
density �61�.

For the MC algorithm to be efficient, the fluctuations in
the statistical weight of the walkers—or, equivalently, in the
number of walkers—should remain small, throughout the en-
tire time evolution. This condition is verified if the factor
W�y� is always of order one. Note however that this term
tends to enhance �suppress� the weight of configurations in
the vicinity of the local minima �maxima� of U�y�, where the
Laplacian is positive �negative�. Hence, if the energy land-
scape varies very rapidly in space, then the fluctuations in the
statistical weights—or in the number of walkers—will in
general be large, unless the elementary time step 	t is chosen
very small. This feature represents a limiting factor of MC

simulations, which makes the sampling of the probability
density at large times very computationally expensive.

Clearly, the elementary propagation time step 	t is the
shortest time scale in the simulation. On the other hand, in
the slow-mode effective theory one integrates out the dynam-
ics in the time scale range �	t ,1 /b	t�. Hence, we expect that
by taking into account of the corrections associated to the
renormalized effective interaction it is possible to perform
MC simulations in which the integration time step 	t is cho-
sen a factor 1 /b larger.

In practice, the effective slow-mode theory introduces a
correction in the reweighting—or branching. To order L=1
one has

WL=1�y� = e�1/2���2U�y�	t � e−�D/�„�1−b�/b�…�2Vef f�y�	t

�68�

Notice that this expression contains a factor of the inverse
frequency cutoff 1 /� in the exponent. Such a term is pro-
portional to the elementary time step 	t. The corresponding
proportionality factor reads 2 only for periodic path inte-
gral. For a generic initial value MC one can write in general

� = �
2

	t
, �69�

where the constant � is to be determined from simulations.
Hence, we obtain

WL=1�y� = e2�2U�y�	t � e−��D/22�„�1−b�/b…�2Vef f�y�	t2. �70�

The unknown constant � can be determined by matching
the results obtained by running a short simulation in the
tree-level theory—i.e., using an integration step 	t and the
tree-level weighting term �Eq. �67��—with those obtained in
the effective theory—i.e., using an integration step 1 /b	t
and the renormalized weighting term �Eq. �70��. In the re-
gime of decoupling of fast and slow modes, once the match-
ing has been done, the two algorithms must generate the
same evolution for the probability density at any later times.
We emphasize that, since the expressions �56�–�58� have
been derived in the continuum limit, they are independent on
the choice of the prescription adopted to define the stochastic
calculus. On the other hand, the discretized expressions �67�
and �70� are based specifically on the choice of the Stra-
tonovich prescription.

In the next session, we shall provide an example which
illustrates how this procedure works in practice and show
that the fundamental and the effective theory do indeed gen-
erate the same long-time stochastic dynamics.

VII. ILLUSTRATIVE EXAMPLE

In order to illustrate how the renormalization of the effec-
tive interaction works in a simple example, let us consider
the dynamics of a point particle, diffusing in a rugged asym-
metric harmonic oscillator,

U�x� = h1x2 + h2x + h3 sin�wx� , �71�

with h1=2 , h2=1 , h3=1 , w=4. The viscosity coefficient
is set to �=5 and inverse temperature to �=5. Note that this
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potential has been chosen in such a way that the average
value of x at thermal equilibrium is nonvanishing. The cor-
responding L=0, L=1, and L=2 effective potentials read,

Vef f
L=0�x� =

1

4�

�h2 + 2h1x + h3w cos�wx��2

−
2

�
�2h1 − h3w2 sin�wx��� �72�

Vef f
L=1�x� = Vef f

L=0�x� +
1

4�
� �1 − b�D

b�

− 2h3w3 cos�wx��h2

+ 2h1x + h3w cos�wx�� −
2h3w4 sin�wx�

�

+ 2�− 2h1 + h3w2 sin�wx��2�� �73�

Vef f
L=2�x� = Vef f

L=0�x� + Vef f
L=1�x� +

D2�1 − b�2

4b2���2h3w4��w�h2

+ 2h1x�cos�wx� + 4�h3w2 cos�2wx�

+ �8�h1 + w2�sin�wx�� . �74�

The diffusion Monte Carlo algorithm used in our numeri-
cal simulations is presented in the Appendix B. The factor �,
which appears in the L=1, L=2 improvement terms was
determined from the time interval 	t using Eq. �69�. The
proportionality constant � in Eq. �70� was determined once
and for all, by matching the result of �x�t�� of the unim-
proved �i.e., L=0� simulations after 10 integration time steps
with 	t=0.01, with those of the RG-improved �i.e., L
=1, L=2� MC simulations after a single elementary time
step, with 	t�=0.1. We found �=0.35, with no appreciable
difference between the L=1 and L=2 estimates.

Let us now discuss the results of our simulations. We
begin by analyzing the effects of accounting for the factor
W�x� defined in Eq. �67�, in numerical MC simulations. Fig-
ure 5 shows the average position, once the system has at-
tained thermal equilibrium, obtained by diffusion MC simu-
lations with and without branching the walkers according to
W�x�. We recall that neglecting such a term is equivalent to
simulating the dynamics in the Ito calculus, while the
branching is expected to improve the time discretization to
order 	t2. Indeed, our results show that, when one chooses
small discretization steps, the two approaches are consistent
with each other and yield the exact equilibrium average—
which was computed directly from the Boltzmann distribu-
tion. On the other hand, at large discretization steps, account-
ing for the factor W significantly improves the result. The
same discussion can be trivially repeated in simulations in
which the factor W�x� is interpreted as a reweighting term,
while the number of walkers is held constant.

We now discuss the use of our effective theory to simulate
the stochastic dynamics, using large time steps. Figure 6
shows the time evolution of the average particle position at
time t, computed using a small discretization time step—	t
=0.01—and a large discretization step—	t�=0.1. The two
curves obtained in the original—i.e., tree-level—theory are

compared with the results of the effective theory at order L
=1 and L=2, which were obtained using an integration time
step which was one order of magnitude larger, 	t�=0.1.

The time evolution of the observable �x�t��, obtained in
the tree-level theory using large integration time steps
�squares� is inconsistent with the same quantity obtained us-
ing small time steps 	t=0.01 �circles�. This is expected, be-
cause for 	t=0.1 the numerical simulations of the tree-level
theory start to be affected by significant discretization
errors—see Fig. 5.

The results of simulations with large discretization time
steps are significantly improved if one uses the effective
theory, already at order L=1 �diamonds�. At order L=2 the

0 0.05 0.1 0.15

�t

-0.4

-0.35

-0.3

-0.25

-0.2

<
x
>

Stratonovich
Ito
Exact

Ito vs Stratonovic in Diffusion MC
Average position at thermal equilibrium

FIG. 5. �Color online� Average position at thermal equilibrium,
obtained from diffusion MC simulations with �circles� and without
�squares� the branching factor W�t� of Eq. �67�, for different values
of the discretization time step 	t. Errors are smaller than the
symbols.

0 1

t

-0.4

-0.3

-0.2

<
x
(t
)>

Exact equilibrium average

L=0 dt=0.01
L=0 dt=0.1
L=1 dt=0.1
L=2 dt=0.1

Renormalization Group Improved MC
Time evolution of the average position

0.5 0.6 0.7 0.8 0.9

t

-0.3

FIG. 6. �Color online� The average position of the particle at
time t, computed in the tree-level theory �circles, 	t=0.01 for L
=0�, and in the effective theory �squares 	t=0.1 for L=0, L=1 and
L=2�. The inset displays a part of the same curve, on a larger scale.
Statistical errors are smaller than the symbols. The 	t=0.1, L=2
cannot be distinguished from the 	t=0.01, L=0 curve.
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dynamics of the tree-level theory simulated at 	t=0.01 is
indistinguishable from the dynamics of the effective theory
simulated with 	t�=0.1 �triangles�. These results show that
the hard-mode dynamics in the short-time range from 0.01 to
0.1 has been correctly taken into account by means of the
renormalized effective interaction. As a consequence, the use
of the effective theory allows to obtain very accurate predic-
tions, using larger time steps.

VIII. LONG-TIME DYNAMICS OF MOLECULAR
SYSTEMS

The improvement of the MC algorithm based on our ef-
fective theory is expected to be most efficient when the gap
between the slow and the fast modes is very large. In fact, in
this regime, the slow-mode perturbation theory remains reli-
able even when one integrates out a large frequency shell,
i.e., when b�1. Hence, in this case, by RG improvement it
is possible to simulate the time evolution using elementary
time steps 	t� which are significantly larger than the original
elementary time step 	t, which would be used in the usual
�unimproved� MC algorithm.

A natural application of the RG-improved MC is the in-
vestigation of the long-time dynamics of macromolecules,
for which standard MD or MC algorithms can be extremely
computationally expensive. Hence, it is interesting to address
the question of what is the typical range of reliability of the
slow-mode perturbation theory for a typical molecular inter-
action, at room temperature. To this end, let us consider the
overdamped diffusion at temperature 300 K of two mol-
ecules of mass m=30 amu, interacting through a van der
Waals potential,

U�r� = 4����

r
�12

− ��

r
�6	 , �75�

where �=4 KJ /mol and �=0.3 nm. A typical value for the
viscosity coefficient for a molecule in its solvent �e.g., an
amino acid in water� is ��2�103 amu ps−1. The typical
time steps used in the numerical integration of the Langevin
Eq. �2� are of the order 	t�10−3–10−2 ps.

The tree-level effective interaction associated to the po-
tential �75� is

Vef f�r� =
1

4�

�24�

�6

r7 �1 – 2
�6

r6 �	2

−
8�

�

�6

r8 �156
�6

r6 − 42	� .

�76�

This function and the corresponding L=1 and L=2 renormal-
ized effective interactions are plotted in Fig. 7 for �=1. This
plot shows that, for a realistic set of parameters, the pertur-
bative expansion remains reliable even when one integrates
out a very large shell of modes, with b�10−2. This fact
suggests that the ultraviolet dynamics is essentially free
brownian motion, while the long-time dynamics is domi-
nated by very low-frequency modes, and is driven by the
force field. This fact has remarkable consequences on prac-
tical numerical simulations. It implies that by using the
renormalized effective potential, it should be possible to
adopt integration time steps which are about 102 time larger

than those required to simulate the dynamics in the original
tree-level theory.

IX. CONCLUSIONS

In this work, we have presented a new approach to the
problem of investigating the long-time out-of-equilibrium
dynamics of multidimensional systems obeying Langevin
dynamics. In the presence of decoupling of time scales, the
methods based on the direct integration of the Langevin
equation �MD� or on the time propagation of the Fokker-
Planck probability density �MC� are usually inefficient, be-
cause a significant amount of computational time in invested
to simulate uninteresting fast stochastic fluctuations.

We have shown that the decoupling of time scales which
limits MD and MC approach can in fact be exploited to
perform analytically the average over the short-time stochas-
tic fluctuations. After the integration over the fast modes has
been performed, one obtains an effective theory which de-
scribes directly the relevant dynamics, with a lower time
resolution. In such an effective theory, the effective action in
the path integral receives corrections, which account for the
ultraviolet physics which is cutoff. We have developed a rig-
orous scheme which allows to organize such corrections in
term of a perturbative series in which the expansion param-
eters are the ratio between the soft frequency scales and the
hard frequency scale b�. Hence, subleading terms in the
perturbative expansion come with higher inverse powers of
the hard scales b� and become irrelevant in the limit in
which the decoupling of fast and slow modes is very large.

The Feynman diagrams which have to be calculated to
obtain the corrections to any given order in this perturbation
theory can be identified from their degree of slowness

L�Feynman diagram� = Nv − 1 + N� +
Nx

2
. �77�

Diagrams with degree of slowness L generate corrections
proportional to 1 / �b��L. In particular, we have found that

1 1.2 1.4

r/�

-4

-2

0

2

4

V
e
ff
(r

)

L=0
L=1 b=0.01
L=2 b=0.01

Renormalized Effective Interaction
Van-der-Waals Interaction

FIG. 7. �Color online� The tree-level, L=1 and L=1 renormal-
ized effective potential Vef f�r� for the van der Waals interaction Eq.
�75�, obtained integrating out the modes in the shell Sb= �b� ,��
with �=2 /0.01 ps and b=0.01.
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the leading-order correction �i.e., L=1� is proportional to the
Laplacian of the effective potential Vef f,

S��x�� �
D



1 − b

b�


0

t

d�	Vef f�x����� . �78�

At the next-to-leading order, a term containing fourth-order
derivatives appears,

S��x�� �
D



1 − b

b�


0

t

d�	Vef f�x�����

+
1

2
�D



1 − b

b�
�2

0

t

d�	2Vef f�x����� . �79�

On the other hand, a space-dependent, tensor correction to
the diffusion coefficient appears only as a higher-order effect
�L=5�. It is important to stress the fact that, in the present
approach, the ultraviolet cutoff � �or, equivalently, the short-
time scale 	t� is kept finite at all stages. Upon taking the
continuum limit 	t→0, all the correction terms in the effec-
tive theory vanish and one recovers the original theory, de-
fined by the effective Schrödinger equation �6�.

The main usefulness of such an effective theory resides in
the fact that it can be used to develop an improved MC
approach, to compute the long-time evolution of the Fokker-
Planck probability. In this work, we focused specifically on
the implementation of the improved MC approach based on
the Stratonovich calculus and leave to future study the com-
parison between our computation and the corresponding Ito
result. The elementary time steps used in the RG improved
MC algorithm are a factor 1 /b larger those of the MC algo-
rithm for the underlying tree-level theory. Since the dynam-

ics in the time range �	t ,1 /b	t� is averaged analytically, the
RG improved MC algorithm avoids investing computational
time in simulating the fast-mode dynamics associated to lo-
cal Brownian motion.

In the specific case of molecular interactions at room tem-
perature, we have shown that the perturbative approach re-
mains reliable even when one integrates large frequency
shells, with b�0.01. This feature suggests that, by using the
effective theory, it is possible to simulate time intervals
which can be up to a factor �100 longer than in the usual
MC approach.
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APPENDIX A: PROPAGATOR OF THE FAST MODES

Here we derive free fast-mode propagator G�
0 ��n ,�m� ap-

pearing in the diagrams, using the standard source technique.
We first add a source term to Z�

0 ,

Z�
0 → Z�

0 ����n��

= Dx�e−�t���n��Sb
����n

2/4�x̃��n�x̃�−�n�+x̃��n���−�n��,

�A1�

= Dx�e−��t/2����n��Sb
���2/2��/2���2/n��x̃��n�+�2/��n

2����n���x̃�−�n�+�2/��n
2���−�n��+�2/��n

2�����n����−n���. �A2�

Then, we functionally differentiate twice with respect to the source,

G�
0 ��n,�m� = lim

�→0

1

��t�2

�

���− �n�
�

���− �m�
exp �t���n��Sb

���n���− �n� =
2

��t�n
2��m+�n,0. �A3�

Note that since the zero mode belongs to the slow modes
part of the kinetic action, the kinetic operator for the
fast modes is never singular and can be inverted without
troubles.

APPENDIX B: DIFFUSION MONTE CARLO ALGORITHM

Our numerical study were performed using the following
diffusion Monte Carlo algorithm:

�1� A ensemble of Nw=18 000 initial configurations �x1�t
=0� , . . . ,xNw

�t=0�� was generated by sampling from a nar-
row Gaussian distributions of width �=0.01, centered at the

origin x=0. Each of such positions represents the starting
point of a walker.

�2� A new set of Nw configurations was obtained by evolv-
ing the initial points for an elementary interval 	t, according
to the Langevin dynamics in the Ito calculus,

xl�t + 	t� = xl�t� −
	t

�

d

dx
U�xl�t�� + 	t�, l = 1, . . . ,Nw. �B1�

	t� represents the usual Brownian diffusion term, which
was performed by sampling from a Gaussian of width �2

= 2
��	t, centered at the origin.
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�3� For each walker, we generated a random number �
� �−0.5,0.5� and we made Nc copies of the walker, where Nc
is the integer part of W�x�t+	t��+�. Hence, for Nc=0 the
walker was aborted, for Nc=1 the walker was left un-
changed, while for Nc�1 the walker gave raise to descen-
dents, which then propagated independently from the pro-
genitor. The integration time step 	t was chosen in such a

way that the relative fluctuations in the population of walkers
were only occasionally exceeding 10%.

�4� The steps 2–3 were iterated for many integration time
steps.

�5� The quantity �x�t�� was obtained from the mean over
the configurations of the walkers. The statistical error was
estimated from the variance.
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