16,652 research outputs found
Electromagnetic Energy, Absorption, and Casimir Forces. Inhomogeneous Dielectric Media
A general, exact formula is derived for the expectation value of the
electromagnetic energy density of an inhomogeneous absorbing and dispersive
dielectric medium in thermal equilibrium, assuming that the medium is well
approximated as a continuum. From this formula we obtain the formal expression
for the Casimir force density. Unlike most previous approaches to Casimir
effects in which absorption is either ignored or admitted implicitly through
the required analytic properties of the permittivity, we include dissipation
explicitly via the coupling of each dipole oscillator of the medium to a
reservoir of harmonic oscillators. We obtain the energy density and the Casimir
force density as a consequence of the van der Waals interactions of the
oscillators and also from Poynting's theorem.Comment: 13 pages, no figures. Updated version with generalization to finite
temperature and added example
Crystal structure and physical properties of EuPtIn intermetallic antiferromagnet
We report the synthesis of EuPtIn single crystalline platelets by the
In-flux technique. This compound crystallizes in the orthorhombic Cmcm
structure with lattice parameters \AA, \AA and
\AA. Measurements of magnetic susceptibility, heat capacity,
electrical resistivity, and electron spin resonance (ESR) reveal that
EuPtIn is a metallic Curie-Weiss paramagnet at high temperatures and
presents antiferromagnetic (AFM) ordering below K. In addition, we
observe a successive anomaly at K and a spin-flop transition at
T applied along the -plane. In the paramagnetic state, a
single Eu Dysonian ESR line with a Korringa relaxation rate of Oe/K is observed. Interestingly, even at high temperatures, both ESR
linewidth and electrical resistivity reveal a similar anisotropy. We discuss a
possible common microscopic origin for the observed anisotropy in these
physical quantities likely associated with an anisotropic magnetic interaction
between Eu 4 electrons mediated by conduction electrons.Comment: 5 pages, 5 figure
- …