2,137 research outputs found

    Nuclear energy density optimization: Large deformations

    Full text link
    A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS. A sensitivity analysis at the optimal solution has revealed the importance of states at large deformations in driving the parameterization of the functional. The good agreement with experimental data on masses and separation energies, achieved with the previous parameterization UNEDF0, is largely preserved. In addition, the new energy density UNEDF1 gives a much improved description of the fission barriers in 240Pu and neighboring nuclei.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.

    Applications of dielectrophoretic/electro-hydrodynamic “zipper” electrodes for detection of biological nanoparticles

    Get PDF
    A major problem for surface-based detection techniques such as surface plasmon resonance and quartz crystal microbalances is that at low concentrations, diffusion is an insufficient driving force to bring colloidal submicron-scale particles to the detection surface. In order to overcome this, it has previously been demonstrated that a combination of dielectrophoresis and AC-electro-hydrodynamic flow can be used to focus cell-sized particles from suspension onto a large metal surface, in order to improve the detection capabilities of such systems. In this paper we describe how the combination of these two phenomena, using the so-called “zipper” electrode array, can be used to concentrate a wide range of nanoparticles of biological interest, such as influenza virus, dissolved albumin, and DNA molecules as well as latex beads of various sizes. We also demonstrate that the speed at which particles are transported towards the centre of the electrode pads by dielectrophoresis and electro-hydrodynamic flow is not related to the particle size for colloidal particles

    Issues Around Researching OHS of Samoan Migrant Workers

    Get PDF
    Workers from Pacific nations constitute a substantial proportion of the labour force in NZ, particularly in Auckland, which has one of the largest concentrations of Pacific Island workers in the world. Samoans constitute the largest Pacific ethnic group in NZ, comprising 131,103 or 49% of the resident Pacific population (265,974) (Statistics NZ, 2010). However, Pacific Island workers in NZ are typically employed in low paid, precarious, hazardous work that often has little chance of advancement. There is also some evidence that Pacific Island workers are over­represented in NZ’s work­related injury and illness statistics (Allen & Clarke, 2006). While occupational health and safety (OHS) of Pacific Island migrant workers highlights a number of issues, studies often provide inadequate explanations of what exactly is occurring or fully capture the working experiences of Pacific Island migrant workers. This paper reports on the initial work undertaken as part of an international collaborative study located in Samoa and NZ, aimed at investigating the OHS experiences of Samoan migrant workers. In particular, the paper presents a multi­layered framework and a set of research principles that can be used to illuminate often inaccessible populations located in changing working and living environments. Finally, this study exemplifies the complex issues surrounding the migrant workers’ health and safety, workers’ compensation and rehabilitation

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let

    Eureka! Aerogel capture of meteoroids in space

    Get PDF
    Light gas gun studies have shown that 6 km/s solid mineral and glass test particles can be successively captured in 0.05 g cm(exp -3) aerogel without severe heating or fragmentation. In spite of this work, there has been uncertainty in the performance of aerogel for hypervelocity capture of real meteoroids. Natural impacts differ from simulations in that the particles are likely to be structurally weak and they typically impact at higher velocity that can be simulated in the laboratory. We are fortunate now to have had two successful capture experiments using aerogel exposed in space. These experiments provide fundamental data for the assessment of the value of silica aerogel for capture of hypervelocity meteoroids from spacecraft. The first experiment used 0.02 g cm(exp -3) aerogel flown on the lid of a Shuttle Get Away Special canister. During its 9 day exposure, the 0.165 m(exp 2) of aerogel in this Sample Return Experiment (SRE) captured two long 'carrot-shaped' tracks and one highly fractured bowl shaped 'crater'. The second collection was with 0.04 m(exp 2) of 0.05 g cm(exp -3) aerogel exposed on ESA's Eureca freeflying spacecraft that was exposed for 11 months before recovery by the Shuttle. The Eureca aerogel exposure consisted of four 10x10 cm module trays that were part of the TiCCE meteoroid collector built by the University of Kent at Canterbury. To date we have found ten 'carrot-shaped' tracks and two 'craters' on this experiment. The longest tracks in both exposures are over 2 mm long. Two of the TiCCE modules had a 0.1 micron Al film suspended a millimeter above the aerogel. On these modules several of the projectiles fragmented during passage through the film producing fields of carrot shaped tracks from the resulting miniature 'meteor' shower. Most of the tracks in these showers have observable particles at their ends. We have extracted one of the carrot track meteoroids and mounted it in epoxy for sectioning. So far the examination of these 14 impacts suggests that low density aerogel is a magic and highly effective media for intact capture of hypervelocity particles in space

    Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design

    Get PDF
    We use steady-state and time-resolved photoluminescence (PL) spectroscopy to investigate the luminescent properties of a sulfonated poly(diphenylenevinylene) lithium salt (PDV.Li) in water/propanol solutions at different concentrations, with a view to assessing its aggregation behavior. In particular, we compare results from uninsulated PDV.Li and cyclodextrin-threaded PDV.Li polyrotaxane (PDV.Li⊂β-CD). We find that addition of 1-propanol (≥20 weight%) leads to a significant blue-shift (of ∼0.20 eV) of the PL spectra, that we assign to suppressed interchain aggregation in PDV.Li solutions, with a concomitant fourfold increase in the fluorescence quantum efficiency (i.e. from 14 to 60%). Surprisingly, a moderate concentration of propanol increases further the luminescence efficiency even for PDV.Li⊂β-CD, whose supramolecular encapsulation already provides a shield against aggregation. Indeed, addition of propanol reduces the solvent polarity, and therefore helps solubilizing these materials that are still largely aromatic in nature. Interestingly, however, both uninsulated PDV.Li and polyrotaxane solutions exhibit signs of aggregation at high propanol fraction (>70%) with a distinctively weaker coupling than that of interchain states in PDV.Li at high water concentration and in pure water in particular. While we ascribe such behavior to a poor solvation of the polar moieties, we also report a different strength of aggregation for PDV.Li and PDV.Li⊂β-CD that can be attributed to the presence of the cyclodextrin rings. In PDV.Li⊂β-CD hydrogen bonding between the cyclodextrin rings may lead to closer packing between the polymer chains. We therefore suggest that a content of propanol between 30 and 70% provides a good balance of hydrophobic and hydrophilic interactions both for PDV.Li and PDV.Li⊂β-CD

    Establishing the values for patient engagement (PE) in health-related quality of life (HRQoL) research: an international, multiple-stakeholder perspective

    Get PDF
    PurposeActive patient engagement is increasingly viewed as essential to ensuring that patient-driven perspectives are considered throughout the research process. However, guidance for patient engagement (PE) in HRQoL research does not exist, the evidence-base for practice is limited, and we know relatively little about underpinning values that can impact on PE practice. This is the first study to explore the values that should underpin PE in contemporary HRQoL research to help inform future good practice guidance. MethodsA modified ‘World Café’ was hosted as a collaborative activity between patient partners, clinicians and researchers: self-nominated conference delegates participated in group discussions to explore values associated with the conduct and consequences of PE. Values were captured via post-it notes and by nominated note-takers. Data were thematically analysed: emergent themes were coded and agreement checked. Association between emergent themes, values and the Public Involvement Impact Assessment Framework were explored. ResultsEighty participants, including 12 patient partners, participated in the 90-min event. Three core values were defined: (1) building relationships; (2) improving research quality and impact; and (3) developing best practice. Participants valued the importance of building genuine, collaborative and deliberative relationships—underpinned by honesty, respect, co-learning and equity—and the impact of effective PE on research quality and relevance. Conclusions An explicit statement of values seeks to align all stakeholders on the purpose, practice and credibility of PE activities. An innovative, flexible and transparent research environment was valued as essential to developing a trustworthy evidence-base with which to underpin future guidance for good PE practice.Peer reviewe

    Time-separated entangled light pulses from a single-atom emitter

    Full text link
    The controlled interaction between a single, trapped, laser-driven atom and the mode of a high-finesse optical cavity allows for the generation of temporally separated, entangled light pulses. Entanglement between the photon-number fluctuations of the pulses is created and mediated via the atomic center-of-mass motion, which is interfaced with light through the mechanical effect of atom-photon interaction. By means of a quantum noise analysis we determine the correlation matrix which characterizes the entanglement, as a function of the system parameters. The scheme is feasible in experimentally accessible parameter regimes. It may be easily extended to the generation of entangled pulses at different frequencies, even at vastly different wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal of Physic
    corecore