38 research outputs found

    A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans

    Get PDF
    Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure–activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the male-attracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying small-molecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits

    Tyrosine Phosphorylation of Rac1: A Role in Regulation of Cell Spreading

    Get PDF
    Rac1 influences a multiplicity of vital cellular- and tissue-level control functions, making it an important candidate for targeted therapeutics. The activity of the Rho family member Cdc42 has been shown to be modulated by tyrosine phosphorylation at position 64. We therefore investigated consequences of the point mutations Y64F and Y64D in Rac1. Both mutations altered cell spreading from baseline in the settings of wild type, constitutively active, or dominant negative Rac1 expression, and were accompanied by differences in Rac1 targeting to focal adhesions. Rac1-Y64F displayed increased GTP-binding, increased association with βPIX, and reduced binding with RhoGDI as compared with wild type Rac1. Rac1-Y64D had less binding to PAK than Rac1-WT or Rac1-64F. In vitro assays demonstrated that Y64 in Rac1 is a target for FAK and Src. Taken together, these data suggest a mechanism for the regulation of Rac1 activity by non-receptor tyrosine kinases, with consequences for membrane extension

    Organic aciduria and butyryl CoA dehydrogenase deficiency in BALB/cByJ mice.

    No full text
    A metabolic screening program of inbred strains of mice has detected a marked organic aciduria in the BALB/cByJ strain. Gas chromatographic and mass spectrometric analysis identified large quantities of n-butyrylglycine plus lesser quantities of ethylmalonic acid. Crosses with the nonexcreting C57BL/6J strain indicate that this condition is inherited as an autosomal recessive trait. Independently from this screening a variant with no detectable enzyme activity of butyryl CoA dehydrogenase (BCD) in liver and kidney of the BALB/cByJ strain but not other BALB/c sublines was discovered. Data from a three-point cross indicated that the null variant maps to the structural locus for the enzyme, Bcd-1, on chromosome 5. The findings indicate that a mutation at or near Bcd-1 in the BALB/cByJ strain resulted in a biochemical abnormality manifest as the BCD deficiency. It is concluded that accumulation of butyryl CoA due to a block in the oxidation of short-chain fatty acids results in an overproduction of organic metabolites leading to the observed organic aciduria. The fact that other BALB/c substrains do not exhibit this abnormality further suggests that this disorder reflects subline divergence within the BALB/c family

    The pathology of the feline model of mucopolysaccharidosis I.

    Get PDF
    Five cats with feline alpha-L-iduronidase-deficient mucopolysaccharidosis were studied. Membrane-bound cytoplasmic inclusions were present in central nervous system neurons, hepatocytes, chondrocytes, vascular and splenic smooth muscle cells, bone marrow leukocytes, and fibroblasts of the skin, eye, and cardiac valves. The lesions in these cats closely resemble those described in human patients with mucopolysaccharidosis I H (Hurler syndrome)
    corecore