368 research outputs found

    Global ozone forecasting based on ERS-2 GOME observations

    Get PDF
    International audienceThe availability of near-real time ozone observations from satellite instruments has recently initiated the development of ozone data assimilation systems. In this paper we present the results of an ozone assimilation and forecasting system, in use since Autumn 2000. The forecasts are produced by an ozone transport and chemistry model, driven by the operational medium range forecasts of ECMWF. The forecasts are initialised with realistic ozone distributions, obtained by the assimilation of near-real time total column observations of the GOME spectrometer on ERS-2. The forecast error diagnostics demonstrate that the system produces meaningful total ozone forecasts for up to 6 days in the extratropics. In the tropics meaningful forecasts of the small anomalies are restricted to shorter periods of about two days with the present model setup. It is demonstrated that important events, such as the breakup of the South Pole ozone hole and mini-hole events above Europe can be successfully predicted 4--5 days in advance

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Spectral function of the 1D Hubbard model in the U→+∞U\to +\infty limit

    Full text link
    We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at the Fermi energy like ∣ω−εF∣−3/8|\omega-\varepsilon_F|^{-3/8} in the U→+∞U\to +\infty limit. The Luttinger liquid behaviour ∣ω−εF∣α|\omega-\varepsilon_F|^\alpha, where α→1/8\alpha \to 1/8 as U→+∞U\to +\infty , should be limited to ∣ω−εF∣∼t2/U|\omega-\varepsilon_F| \sim t^2/U (for UU large but finite), which shrinks to a single point, ω=εF\omega=\varepsilon_F,in that limit. The consequences for the observation of the Luttinger liquid behaviour in photoemission and inverse photoemission experiments are discussed.Comment: 4 pages, RevTeX, 2 figures on reques

    Consistent low-energy reduction of the three-band model for copper oxides with O-O hopping to the effective t-J model

    Full text link
    A full three-band model for the CuO2_{2} plane with inclusion of all essential interactions - Cu-O and O-O hopping, repulsion at the copper and oxygen and between them - is considered. A general procedure of the low-energy reduction of the primary Hamiltonian to the Hamiltonian of the generalized tt-t′t'-JJ model is developed. An important role of the direct O-O hopping is discussed. Parameters of the effective low-energy model (the hopping integral, the band position and the superexchange constant JJ are calculated. An analysis of the obtained data shows that the experimental value of JJ fixes the charge transfer energy Δ=(ϵp−ϵd)\Delta =(\epsilon_{p}-\epsilon_{d}) in a narrow region of energies.Comment: 32 pp. (LATEX), two figures (PostScript) appende

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989

    Theory of the optical conductivity of (TMTSF)2_2PF6_6 in the mid-infrared range

    Full text link
    We propose an explanation of the mid-infrared peak observed in the optical conductivity of the Bechgaard salt (TMTSF)2_2PF6_6 in terms of electronic excitations. It is based on a numerical calculation of the conductivity of the quarter-filled, dimerized Hubbard model. The main result is that, even for intermediate values of U/tU/t for which the charge gap is known to be very small, the first peak, and at the same time the main structure, of the optical conductivity is at an energy of the order of the dimerization gap, like in the infinite UU case. This surprising effect is a consequence of the optical selection rules.Comment: 10 pages, 9 uuencoded figure

    Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat

    No full text
    International audienceThis paper describes a new ozone column retrieval algorithm and its application to SCIAMACHY measurements. The TOSOMI algorithm is based on the Differential Optical Absorption Spectroscopy (DOAS) technique and implements several improvements over older algorithms. These improvements include aspects like (i) the explicit treatment of rotational Raman scattering, (ii) an improved air-mass factor formulation which is based on a simulation of the reflectivity spectrum and a subsequent DOAS fit of this simulated spectrum, (iii) the use of an improved ozone climatology and a column dependent air-mass factor, (iv) the use of daily varying ECMWF temperature profile analyses. The results of three validation exercises are reported. The TOSOMI columns are compared with an extensive set of ground-based observations (Brewer, Dobson) for the years 2003 and 2004. Secondly, a direct comparison for January?June 2003 with two new GOME retrievals, GDP Version 4 and TOGOMI, is presented. Third, data assimilation is used to study the dependence of the TOSOMI columns with retrieval parameters such as the viewing angle, cloud fraction and geographical location. These comparisons show a good consistency on the percent level between the GOME and SCIAMACHY algorithms. The present TOSOMI implementation (v0.32) shows an offset of about ?1.5% with respect to ground-based observations and the GOME retrievals

    Higher order effective low-energy theories

    Full text link
    Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate Brillouin-Wigner perturbation theory (projection method), the canonical transformation, and the resolvent methods are compared. We use the Hubbard model as an example to show how, to fourth order in hopping t, all methods lead to the same effective theory, namely the t-J model with ring exchange and various correlated hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for orders higher than second. We also show that in higher orders, different approaches can lead to seemingly different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by an additional unitary transformation whose generator is given explicitly. The importance of transforming the operators is emphasized and the equivalence of their transformed structure within the different approaches is also demonstrated.Comment: 14 pages, no figure

    Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach

    Full text link
    It has been generally accepted that the threshold structure observed in the oxygen K edge X-ray absorption spectrum in 3d transition metal oxides represents the electronic structure of the 3d transition metal. There is, however, no consensus about the correct description. We present an interpretation, which includes both ground state hybridization and electron correlation. It is based on a configuration interaction cluster calculation using a MO6 cluster. The oxygen K edge spectrum is calculated by annihilating a ligand hole in the ground state and is compared to calculations representing inverse photoemission experiments in which a 3d transition metal electron is added. Clear differences are observed related to the amount of ligand hole created in the ground state. Two "rules" connected to this are discussed. Comparison with experimental data of some early transition metal compounds is made and shows that this simple cluster approach explains the experimental features quite well.Comment: 10 pages, submitted to Phys. Rev. B, tried to make a better PS file

    Range of the t--J model parameters for CuO2_{2} plane: experimental data constraints

    Full text link
    The t-J model effective hopping integral is determined from the three-band Hubbard model for the charge carriers in CuO2_{2} plane. For this purpose the values of the superexchange constant JJ and the charge-transfer gap EgapE_{gap} are calculated in the framework of the three-band model. Fitting values of JJ and EgapE_{gap} to the experimental data allows to narrow the uncertainty region of the three-band model parameters. As a result, the t/Jt/J ratio of the t-J model is fixed in the range 2.4÷2.72.4 \div 2.7 for holes and 2.5÷3.02.5 \div 3.0 for electrons. Formation of the Frenkel exciton is justified and the main features of the charge-transfer spectrum are correctly described in the framework of this approach.Comment: 20pp., REVTEX 3.0, (11 figures), report 66
    • …
    corecore