61 research outputs found

    Polymorphism in a T-cell receptor variable gene is associated with susceptibility to a juvenile rheumatoid arthritis subset

    Full text link
    This report demonstrates a T-cell receptor (Tcr) restriction fragment length polymorphism, defined by a Tcrb-V6.1 gene probe and Bgl II restriction enzyme, to be absolutely correlated with allelic variation in the coding sequence of a Tcrb-V6.1 gene. A pair of non-conservative amino acid substitutions distinguish the Tcrb-V6.1 allelic variants. An association of this Tcrb-V6.1 gene allelic variant with one form of juvenile rheumatoid arthritis (JRA) was established in a cohort of 126 patients. The association was observed in patients possessing the HLA-DQA1*0101 gene. Among HLA-DQA*0101 individuals, 19 of 26 patients (73.1%) carried one particular Tcrb-V6.1 gene allele as opposed to 11 of 33 controls (33%; p<0.005). Haplotypes carrying this HLA gene have previously been shown to confer increased risk for progression of arthritis in JRA. This demonstration of a disease-associated Tcrb-V gene allelic variant has not, to our knowledge, been previously reported and supports the contribution of polymorphism in the Tcr variable region genomic repertoire to human autoimmune disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46750/1/251_2004_Article_BF00166831.pd

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    An in situ rapid heat-quench cell for small-angle neutron scattering

    No full text
    A dual-temperature sample environment has been developed enabling the rapid heating and quenching of samples in situ for small-angle neutron scattering (SANS). The rapid heat and quench cell (RHQC) allows samples to be rapidly heated up to 600 K and then quenched to 150 K, or vice versa, in a single shot or cycle mode, with the sample in position for data collection. Measured cooling rates of up to 11 K s-1 and heating rates up to 19 K s-1 have been recorded during the testing stages. First results using the RHQC on a hydrogenated/deuterated paraffin blend quenched from the melt illustrate the value of the device in accessing the early stage phase separation kinetics with SANS

    Unlocking the potential of synthetic biology for improving livelihoods in sub-Saharan Africa

    No full text
    Synthetic biology (SynBio) is an interdisciplinary field that has developed rapidly in the last two decades. It involves the design and construction of new biological systems and processes from standardized biological components, networks and synthetic pathways. The goal of Synbio is to create logical forms of cellular control. Biological systems and their parts can be redesigned to carry out completely new functions. SynBio is poised to greatly impact human health, the environment, biofuels and chemical production with huge economic benefits. SynBio presents opportunities for the highly agro-based African economies to overcome setbacks that threaten food security: The setbacks are brought about by climate change, land degradation, over-reliance on food imports, global competition, and water and energy security issues among others. With appropriate regulatory frameworks and systems in place, the benefits of harnessing SynBio to boost development in African economies by far potentially outweigh the risks. Countries that are already using GMOs such as South Africa and Kenya should find the application of SynBio seamless, as it would be a matter of expanding the already existing regulations and policies for GMO use
    • …
    corecore