3,187 research outputs found

    Surface properties of neutron-rich exotic nuclei: A source for studying the nuclear symmetry energy

    Get PDF
    We study the correlation between the thickness of the neutron skin in finite nuclei and the nuclear symmetry energy for isotopic chains of even-even Ni, Sn, and Pb nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The symmetry energy, the neutron pressure and the asymmetric compressibility in finite nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. A correlation between the parameters of the equation of state (symmetry energy and its density slope) and the neutron skin is suggested in the isotopic chains of Ni, Sn, and Pb nuclei.Comment: 13 pages, 10 figures. Accepted for publication in Phys. Rev.

    Symmetry energy of deformed neutron-rich nuclei

    Get PDF
    The symmetry energy, the neutron pressure and the asymmetric compressibility of deformed neutron-rich even-even nuclei are calculated on the examples of Kr and Sm isotopes within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an extended chain of Pb isotopes are also presented. A remarkable difference is found in the trend followed by the different isotopic chains: the studied correlations reveal a smoother behavior in the Pb case than in the other cases. We also notice that the neutron skin thickness obtained for 208^{208}Pb with SLy4 force is found to be in a good agreement with recent data.Comment: 14 pages, 10 figures, 2 tables, accepted for publication in Physical Review

    Scaling Functions and Superscaling in Medium and Heavy Nuclei

    Get PDF
    The scaling function f(ψ′)f(\psi') for medium and heavy nuclei with Z≠NZ\neq N for which the proton and neutron densities are not similar is constructed within the coherent density fluctuation model (CDFM) as a sum of the proton and neutron scaling functions. The latter are calculated in the cases of 62^{62}Ni, 82^{82}Kr, 118^{118}Sn, and 197^{197}Au nuclei on the basis of the corresponding proton and neutron density distributions which are obtained in deformed self-consistent mean-field Skyrme HF+BCS method. The results are in a reasonable agreement with the empirical data from the inclusive electron scattering from nuclei showing superscaling for negative values of ψ′\psi', including those smaller than -1. This is an improvement over the relativistic Fermi gas (RFG) model predictions where f(ψ′)f(\psi') becomes abruptly zero for ψ′≤−1\psi'\leq -1. It is also an improvement over the CDFM calculations made in the past for nuclei with Z≠NZ\neq N assuming that the neutron density is equal to the proton one and using only the phenomenological charge density.Comment: 4 pages, 1 figure, ReVTeX, accepted for publication in Phys. Rev.

    Superscaling in Nuclei: A Search for Scaling Function Beyond the Relativistic Fermi Gas Model

    Get PDF
    We construct a scaling function f(ψ′)f(\psi^{\prime}) for inclusive electron scattering from nuclei within the Coherent Density Fluctuation Model (CDFM). The latter is a natural extension to finite nuclei of the Relativistic Fermi Gas (RFG) model within which the scaling variable ψ′\psi^{\prime} was introduced by Donnelly and collaborators. The calculations show that the high-momentum components of the nucleon momentum distribution in the CDFM and their similarity for different nuclei lead to quantitative description of the superscaling in nuclei. The results are in good agreement with the experimental data for different transfer momenta showing superscaling for negative values of ψ′\psi^{\prime}, including those smaller than -1.Comment: 16 pages, 5 figures, submitted for publication to Phys. Rev.

    Confinement in the Abelian-Higgs-type theories: string picture and field correlators

    Full text link
    Field correlators and the string representation are used as two complementary approaches for the description of confinement in the SU(N)-inspired dual Abelian-Higgs-type model. In the London limit of the simplest, SU(2)-inspired, model, bilocal electric field-strength correlators have been derived with accounting for the contributions to these averages produced by closed dual strings. The Debye screening in the plasma of such strings yields a novel long-range interaction between points lying on the contour of the Wilson loop. This interaction generates a Luescher-type term, even when one restrics oneself to the minimal surface, as it is usually done in the bilocal approximation to the stochastic vacuum model. Beyond the London limit, it has been shown that a modified interaction appears, which becomes reduced to the standard Yukawa one in the London limit. Finally, a string representation of the SU(N)-inspired model with the theta-term, in the London limit, can be constructed.Comment: 17 pages, no figures, REVTeX 4; Invited contribution to the collection of articles devoted to the 70th birthday of Yu.A. Simono

    Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes

    Get PDF
    A comprehensive study of various ground-state properties of neutron-rich and neutron-deficient Mg isotopes with AA=20-36 is performed in the framework of the self-consistent deformed Skyrme-Hartree-Fock plus BCS method. The correlation between the skin thickness and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for this isotopic chain following the theoretical approach based on the coherent density fluctuation model and using the Brueckner energy-density functional. The results of the calculations show that the behavior of the nuclear charge radii and the nuclear symmetry energy in the Mg isotopic chain is closely related to the nuclear deformation. We also study, within our theoretical scheme, the emergence of an "island of inversion" at neutron-rich 32^{32}Mg nucleus, that was recently proposed from the analyses of spectroscopic measurements of 32^{32}Mg low-lying energy spectrum and the charge rms radii of all magnesium isotopes in the sdsd shell.Comment: 13 pages, 13 figures, to be published in Physical Review

    Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations

    Get PDF
    A study of the charge and matter densities and the corresponding rms radii for even-even isotopes of Ni, Kr, and Sn has been performed in the framework of deformed self-consistent mean field Skyrme HF+BCS method. The resulting charge radii and neutron skin thicknesses of these nuclei are compared with available experimental data, as well as with other theoretical predictions. The formation of a neutron skin, which manifests itself in an excess of neutrons at distances greater than the radius of the proton distribution, is analyzed in terms of various definitions. Formation of a proton skin is shown to be unlikely. The effects of deformation on the neutron skins in even-even deformed nuclei far from the stability line are discussed.Comment: 16 pages, 17 figures, to be published in Physical Review

    Temperature dependence of the volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    Get PDF
    The temperature dependence of the volume and surface components of the nuclear symmetry energy (NSE) and their ratio is investigated in the framework of the local density approximation (LDA). The results of these quantities for finite nuclei are obtained within the coherent density fluctuation model (CDFM). The CDFM weight function is obtained using the temperature-dependent proton and neutron densities calculated through the HFBTHO code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical transformed deformed harmonic-oscillator basis. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains around double-magic 78^{78}Ni, 132^{132}Sn, and 208^{208}Pb nuclei. The results for the TT-dependence of the considered quantities are compared with estimations made previously for zero temperature showing the behavior of the NSE components and their ratio, as well as with the available experimental data. The sensitivity of the results on various forms of the density dependence of the symmetry energy is studied. We confirm the existence of `kinks' of these quantities as functions of the mass number at T=0T=0 MeV for the double closed-shell nuclei 78^{78}Ni and 132^{132}Sn and the lack of `kinks' for the Pb isotopes, as well as the disappearance of these kinks as the temperature increases.Comment: 14 pages, 12 figures, 1 table, accepted for publication in Physical Review

    Ab-initio investigation of phonon dispersion and anomalies in palladium

    Full text link
    In recent years, palladium has proven to be a crucial component for devices ranging from nanotube field effect transistors to advanced hydrogen storage devices. In this work, I examine the phonon dispersion of fcc Pd using first principle calculations based on density functional perturbation theory. While several groups in the past have studied the acoustic properties of palladium, this is the first study to reproduce the phonon dispersion and associated anomaly with high accuracy and no adjustable parameters. In particular, I focus on the Kohn anomaly in the [110] direction.Comment: 19 pages, preprint format, 7 figures, added new figures and discussio
    • …
    corecore