3,187 research outputs found
Surface properties of neutron-rich exotic nuclei: A source for studying the nuclear symmetry energy
We study the correlation between the thickness of the neutron skin in finite
nuclei and the nuclear symmetry energy for isotopic chains of even-even Ni, Sn,
and Pb nuclei in the framework of the deformed self-consistent mean-field
Skyrme HF+BCS method. The symmetry energy, the neutron pressure and the
asymmetric compressibility in finite nuclei are calculated within the coherent
density fluctuation model using the symmetry energy as a function of density
within the Brueckner energy-density functional. The mass dependence of the
nuclear symmetry energy and the neutron skin thickness are also studied
together with the role of the neutron-proton asymmetry. A correlation between
the parameters of the equation of state (symmetry energy and its density slope)
and the neutron skin is suggested in the isotopic chains of Ni, Sn, and Pb
nuclei.Comment: 13 pages, 10 figures. Accepted for publication in Phys. Rev.
Symmetry energy of deformed neutron-rich nuclei
The symmetry energy, the neutron pressure and the asymmetric compressibility
of deformed neutron-rich even-even nuclei are calculated on the examples of Kr
and Sm isotopes within the coherent density fluctuation model using the
symmetry energy as a function of density within the Brueckner energy-density
functional. The correlation between the thickness of the neutron skin and the
characteristics related with the density dependence of the nuclear symmetry
energy is investigated for isotopic chains of these nuclei in the framework of
the self-consistent Skyrme-Hartree-Fock plus BCS method. Results for an
extended chain of Pb isotopes are also presented. A remarkable difference is
found in the trend followed by the different isotopic chains: the studied
correlations reveal a smoother behavior in the Pb case than in the other cases.
We also notice that the neutron skin thickness obtained for Pb with
SLy4 force is found to be in a good agreement with recent data.Comment: 14 pages, 10 figures, 2 tables, accepted for publication in Physical
Review
Scaling Functions and Superscaling in Medium and Heavy Nuclei
The scaling function for medium and heavy nuclei with
for which the proton and neutron densities are not similar is constructed
within the coherent density fluctuation model (CDFM) as a sum of the proton and
neutron scaling functions. The latter are calculated in the cases of Ni,
Kr, Sn, and Au nuclei on the basis of the corresponding
proton and neutron density distributions which are obtained in deformed
self-consistent mean-field Skyrme HF+BCS method. The results are in a
reasonable agreement with the empirical data from the inclusive electron
scattering from nuclei showing superscaling for negative values of ,
including those smaller than -1. This is an improvement over the relativistic
Fermi gas (RFG) model predictions where becomes abruptly zero for
. It is also an improvement over the CDFM calculations made in
the past for nuclei with assuming that the neutron density is equal
to the proton one and using only the phenomenological charge density.Comment: 4 pages, 1 figure, ReVTeX, accepted for publication in Phys. Rev.
Superscaling in Nuclei: A Search for Scaling Function Beyond the Relativistic Fermi Gas Model
We construct a scaling function for inclusive electron
scattering from nuclei within the Coherent Density Fluctuation Model (CDFM).
The latter is a natural extension to finite nuclei of the Relativistic Fermi
Gas (RFG) model within which the scaling variable was
introduced by Donnelly and collaborators. The calculations show that the
high-momentum components of the nucleon momentum distribution in the CDFM and
their similarity for different nuclei lead to quantitative description of the
superscaling in nuclei. The results are in good agreement with the experimental
data for different transfer momenta showing superscaling for negative values of
, including those smaller than -1.Comment: 16 pages, 5 figures, submitted for publication to Phys. Rev.
Confinement in the Abelian-Higgs-type theories: string picture and field correlators
Field correlators and the string representation are used as two complementary
approaches for the description of confinement in the SU(N)-inspired dual
Abelian-Higgs-type model. In the London limit of the simplest, SU(2)-inspired,
model, bilocal electric field-strength correlators have been derived with
accounting for the contributions to these averages produced by closed dual
strings. The Debye screening in the plasma of such strings yields a novel
long-range interaction between points lying on the contour of the Wilson loop.
This interaction generates a Luescher-type term, even when one restrics oneself
to the minimal surface, as it is usually done in the bilocal approximation to
the stochastic vacuum model. Beyond the London limit, it has been shown that a
modified interaction appears, which becomes reduced to the standard Yukawa one
in the London limit. Finally, a string representation of the SU(N)-inspired
model with the theta-term, in the London limit, can be constructed.Comment: 17 pages, no figures, REVTeX 4; Invited contribution to the
collection of articles devoted to the 70th birthday of Yu.A. Simono
Ground-state properties and symmetry energy of neutron-rich and neutron-deficient Mg isotopes
A comprehensive study of various ground-state properties of neutron-rich and
neutron-deficient Mg isotopes with =20-36 is performed in the framework of
the self-consistent deformed Skyrme-Hartree-Fock plus BCS method. The
correlation between the skin thickness and the characteristics related with the
density dependence of the nuclear symmetry energy is investigated for this
isotopic chain following the theoretical approach based on the coherent density
fluctuation model and using the Brueckner energy-density functional. The
results of the calculations show that the behavior of the nuclear charge radii
and the nuclear symmetry energy in the Mg isotopic chain is closely related to
the nuclear deformation. We also study, within our theoretical scheme, the
emergence of an "island of inversion" at neutron-rich Mg nucleus, that
was recently proposed from the analyses of spectroscopic measurements of
Mg low-lying energy spectrum and the charge rms radii of all magnesium
isotopes in the shell.Comment: 13 pages, 13 figures, to be published in Physical Review
Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations
A study of the charge and matter densities and the corresponding rms radii
for even-even isotopes of Ni, Kr, and Sn has been performed in the framework of
deformed self-consistent mean field Skyrme HF+BCS method. The resulting charge
radii and neutron skin thicknesses of these nuclei are compared with available
experimental data, as well as with other theoretical predictions. The formation
of a neutron skin, which manifests itself in an excess of neutrons at distances
greater than the radius of the proton distribution, is analyzed in terms of
various definitions. Formation of a proton skin is shown to be unlikely. The
effects of deformation on the neutron skins in even-even deformed nuclei far
from the stability line are discussed.Comment: 16 pages, 17 figures, to be published in Physical Review
Temperature dependence of the volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model
The temperature dependence of the volume and surface components of the
nuclear symmetry energy (NSE) and their ratio is investigated in the framework
of the local density approximation (LDA). The results of these quantities for
finite nuclei are obtained within the coherent density fluctuation model
(CDFM). The CDFM weight function is obtained using the temperature-dependent
proton and neutron densities calculated through the HFBTHO code that solves the
nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical
transformed deformed harmonic-oscillator basis. We present and discuss the
values of the volume and surface contributions to the NSE and their ratio
obtained for the Ni, Sn, and Pb isotopic chains around double-magic Ni,
Sn, and Pb nuclei. The results for the -dependence of the
considered quantities are compared with estimations made previously for zero
temperature showing the behavior of the NSE components and their ratio, as well
as with the available experimental data. The sensitivity of the results on
various forms of the density dependence of the symmetry energy is studied. We
confirm the existence of `kinks' of these quantities as functions of the mass
number at MeV for the double closed-shell nuclei Ni and Sn
and the lack of `kinks' for the Pb isotopes, as well as the disappearance of
these kinks as the temperature increases.Comment: 14 pages, 12 figures, 1 table, accepted for publication in Physical
Review
Ab-initio investigation of phonon dispersion and anomalies in palladium
In recent years, palladium has proven to be a crucial component for devices
ranging from nanotube field effect transistors to advanced hydrogen storage
devices. In this work, I examine the phonon dispersion of fcc Pd using first
principle calculations based on density functional perturbation theory. While
several groups in the past have studied the acoustic properties of palladium,
this is the first study to reproduce the phonon dispersion and associated
anomaly with high accuracy and no adjustable parameters. In particular, I focus
on the Kohn anomaly in the [110] direction.Comment: 19 pages, preprint format, 7 figures, added new figures and
discussio
- …