135 research outputs found

    Tactical Supply Chain Distribution Planning In The Telecommunications Service Industry

    Get PDF
    Supply chains are ubiquitous across industries and a considerable e ort has been invested in supply chain management techniques over the last two decades. In equipment-intensive service industries, it often involves repair operations. In this context, tactical inventory planning is concerned with optimally planning supplies and repairs based on demand forecasts and in face of con icting business objectives. It is based on a case study in the telecommunications sector where large quantities and varieties of spare parts are required for service maintenance and repair tasks at customer premises or company exchanges. Speci cally, we consider a multi-echelon spare parts supply chain and tackle the problem of determining an optimal stock distribution plan given a demand forecast. We propose a mixed integer programming and a metaheuristic approach to this problem. The model is open to a variety of network topologies, site functions and transfer policies. It also accommodates multiple objectives by the means of a weighted cost function. We report experiments on pseudo-random instances designed to evaluate plan quality and impact of cost weightings. In particular, we show how appropriate weightings allow to emulate common planning strategies (e.g., just-in-time replenishment, minimal repair). We also assess plan quality and system performance against di erent classes of pseudo-random instances featuring different volume and distribution of stock and demand

    Model and Combinatorial Optimization Methods for Tactical Planning in Closed-Loop Supply Chains

    Get PDF
    International audienc

    Empirical Analysis of Operators for Permutation Based Problems

    Get PDF
    International audienc

    A Combinatorial Optimisation Approach For Closed-Loop Supply Chains Inventory Planning With Deterministic Demands

    Get PDF
    Supply chains in equipment-intensive service industries often involve repair operations. In this context, tactical inventory planning is concerned with optimally planning supplies and repairs based on demand forecasts and in the face of conflicting business objectives. This paper considers closed-loop supply chains and proposes a mixed-integer programming model and a metaheuristic approach to this problem. The model is open to a variety of network topologies, site functions and transfer policies. It also accommodates multiple objectives by the means of a weighted cost function. We report experiments on pseudo-random instances designed to evaluate plan quality and impact of cost weightings. In particular, we show how appropriate weightings allow to implement common planning strategies (e.g., just-in-time replenishment, minimal repair
    • …
    corecore