199 research outputs found

    Search templates for stochastic gravitational-wave backgrounds

    Full text link
    Several earth-based gravitational-wave (GW) detectors are actively pursuing the quest for placing observational constraints on models that predict the behavior of a variety of astrophysical and cosmological sources. These sources span a wide gamut, ranging from hydrodynamic instabilities in neutron stars (such as r-modes) to particle production in the early universe. Signals from a subset of these sources are expected to appear in these detectors as stochastic GW backgrounds (SGWBs). The detection of these backgrounds will help us in characterizing their sources. Accounting for such a background will also be required by some detectors, such as the proposed space-based detector LISA, so that they can detect other GW signals. Here, we formulate the problem of constructing a bank of search templates that discretely span the parameter space of a generic SGWB. We apply it to the specific case of a class of cosmological SGWBs, known as the broken power-law models. We derive how the template density varies in their three-dimensional parameter space and show that for the LIGO 4km detector pair, with LIGO-I sensitivities, about a few hundred templates will suffice to detect such a background while incurring a loss in signal-to-noise ratio of no more than 3%.Comment: Revtex, 7 pages, 18 eps figure

    Cities feeding people project fact sheets

    Get PDF

    Possible way out of the Hawking paradox: Erasing the information at the horizon

    Full text link
    We show that small deviations from spherical symmetry, described by means of exact solutions to Einstein equations, provide a mechanism to "bleach" the information about the collapsing body as it falls through the aparent horizon, thereby resolving the information loss paradox. The resulting picture and its implication related to the Landauer's principle in the presence of a gravitational field, is discussed.Comment: 11 pages, Latex. Some comments added to answer to some raised questions. Typos corected. Final version, to appear in Int. J. Modern. Phys.

    Numerical approach to the Schrodinger equation in momentum space

    Full text link
    The treatment of the time-independent Schrodinger equation in real-space is an indispensable part of introductory quantum mechanics. In contrast, the Schrodinger equation in momentum space is an integral equation that is not readily amenable to an analytical solution and is rarely taught. We present a numerical approach to the Schrodinger equation in momentum space. After a suitable discretization process, we obtain the Hamiltonian matrix and diagonalize it numerically. By considering a few examples, we show that this approach is ideal for exploring bound-states in a localized potential and complements the traditional (analytical or numerical) treatment of the Schrodinger equation in real-space.Comment: 14 pages, 4 figures, several changes and one figure correctio

    PT-symmetry breaking and maximal chirality in a nonuniform PT-symmetric ring

    Full text link
    We study the properties of an N-site tight-binding ring with parity and time-reversal (PT) symmetric, Hermitian, site-dependent tunneling and a pair of non-Hermitian, PT-symmetric, loss and gain impurities ±iÎł\pm i\gamma. The properties of such lattices with open boundary conditions have been intensely explored over the past two years. We numerically investigate the PT-symmetric phase in a ring with a position-dependent tunneling function tα(k)=[k(N−k)]α/2t_\alpha(k)=[k(N-k)]^{\alpha/2} that, in an open lattice, leads to a strengthened PT-symmetric phase, and study the evolution of the PT-symmetric phase from the open chain to a ring. We show that, generally, periodic boundary conditions weaken the PT-symmetric phase, although for experimentally relevant lattice sizes N∌50N \sim 50, it remains easily accessible. We show that the chirality, quantified by the (magnitude of the) average transverse momentum of a wave packet, shows a maximum at the PT-symmetric threshold. Our results show that although the wavepacket intensity increases monotonically across the PT-breaking threshold, the average momentum decays monotonically on both sides of the threshold.Comment: 11 pages, 5 figures, preprin

    Dynamical eigenfunctions and critical density in loop quantum cosmology

    Full text link
    We offer a new, physically transparent argument for the existence of the critical, universal maximum matter density in loop quantum cosmology for the case of a flat Friedmann-Lemaitre-Robertson-Walker cosmology with scalar matter. The argument is based on the existence of a sharp exponential ultraviolet cutoff in momentum space on the eigenfunctions of the quantum cosmological dynamical evolution operator (the gravitational part of the Hamiltonian constraint), attributable to the fundamental discreteness of spatial volume in loop quantum cosmology. The existence of the cutoff is proved directly from recently found exact solutions for the eigenfunctions for this model. As a consequence, the operators corresponding to the momentum of the scalar field and the spatial volume approximately commute. The ultraviolet cutoff then implies that the scalar momentum, though not a bounded operator, is in effect bounded on subspaces of constant volume, leading to the upper bound on the expectation value of the matter density. The maximum matter density is universal (i.e. independent of the quantum state) because of the linear scaling of the cutoff with volume. These heuristic arguments are supplemented by a new proof in the volume representation of the existence of the maximum matter density. The techniques employed to demonstrate the existence of the cutoff also allow us to extract the large volume limit of the exact eigenfunctions, confirming earlier numerical and analytical work showing that the eigenfunctions approach superpositions of the eigenfunctions of the Wheeler-DeWitt quantization of the same model. We argue that generic (not just semiclassical) quantum states approach symmetric superpositions of expanding and contracting universes.Comment: 23 pages, 8 figures. Minor corrections throughout. Significant improvement to key figure illustrating behavior of the eigenfunctions. Version to appear in Classical and Quantum Gravit

    Diffusion of particles in an expanding sphere with an absorbing boundary

    Full text link
    We study the problem of particles undergoing Brownian motion in an expanding sphere whose surface is an absorbing boundary for the particles. The problem is akin to that of the diffusion of impurities in a grain of polycrystalline material undergoing grain growth. We solve the time dependent diffusion equation for particles in a d-dimensional expanding sphere to obtain the particle density function (function of space and time). The survival rate or the total number of particles per unit volume as a function of time is evaluated. We have obtained particular solutions exactly for the case where d=3 and a parabolic growth of the sphere. Asymptotic solutions for the particle density when the sphere growth rate is small relative to particle diffusivity and vice versa are derived.Comment: 12 pages. To appear in J. Phys. A: Math. Theor. 41 (2008

    Measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons using recoil polarization in parallel kinematics

    Get PDF
    We propose a new method for measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons that exploits a symmetry relation for polarization observables in parallel kinematics. This polarization technique does not require variation of electron scattering kinematics and avoids the major sources of systematic errors in Rosenbluth separation.Comment: intended for Phys. Rev. C as a Brief Repor

    The Trigonometric Rosen-Morse Potential in the Supersymmetric Quantum Mechanics and its Exact Solutions

    Full text link
    The analytic solutions of the one-dimensional Schroedinger equation for the trigonometric Rosen-Morse potential reported in the literature rely upon the Jacobi polynomials with complex indices and complex arguments. We first draw attention to the fact that the complex Jacobi polynomials have non-trivial orthogonality properties which make them uncomfortable for physics applications. Instead we here solve above equation in terms of real orthogonal polynomials. The new solutions are used in the construction of the quantum-mechanic superpotential.Comment: 16 pages 7 figures 1 tabl

    Non-Hermitian Rayleigh-Schroedinger Perturbation Theory

    Full text link
    We devise a non-Hermitian Rayleigh-Schroedinger perturbation theory for the single- and the multireference case to tackle both the many-body problem and the decay problem encountered, for example, in the study of electronic resonances in molecules. A complex absorbing potential (CAP) is employed to facilitate a treatment of resonance states that is similar to the well-established bound-state techniques. For the perturbative approach, the full CAP-Schroedinger Hamiltonian, in suitable representation, is partitioned according to the Epstein-Nesbet scheme. The equations we derive in the framework of the single-reference perturbation theory turn out to be identical to those obtained by a time-dependent treatment in Wigner-Weisskopf theory. The multireference perturbation theory is studied for a model problem and is shown to be an efficient and accurate method. Algorithmic aspects of the integration of the perturbation theories into existing ab initio programs are discussed, and the simplicity of their implementation is elucidated.Comment: 10 pages, 1 figure, RevTeX4, submitted to Physical Review
    • 

    corecore