77 research outputs found
Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms
Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical–chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex "colloidal molecules", in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described, revisited and critically interpreted within the framework of the currently understood mechanisms of colloidal heteroepitaxy
Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms
Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical–chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex “colloidal molecules”, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described, revisited and critically interpreted within the framework of the currently understood mechanisms of colloidal heteroepitaxy
Size, Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair Distribution Functions: A Comparative Study of Îł-Fe2O3 Nanosized Spheres and Tetrapods
Due to their limited length of structural coherence nanocrystalline materials show very diffuse powder X-ray diffraction patterns that are difficult to interpret unambiguously. We demonstrate that a combination of high-energy X-ray powder diffraction and atomic pair distribution function analysis can be used to both assess the geometry (i.e., size and shape) and determine the internal atomic ordering of nanocrystalline materials in a straightforward way. As an example we consider cubic Îł-Fe2O3 nanosized crystals shaped as spheres and tetrapods
Reversible wettability of hybrid organic/inorganic surfaces of systems upon light irradiation/storage cycles
In this work we present hybrid organic/inorganic structures that can exhibit reversible surface wettability, altered in a controllable manner. In particular, we use the method of photo-patterning to produce polymeric SU-8 pillars of specific geometries, onto which we subsequently deposit colloidal TiO2 nanorods. In this way, we combine the microroughness of the polymeric pillars with the nanoroughness of the nanorod-coating to create highly hydrophobic surfaces. The hydrophobicity of these systems can be changed reversibly into hydrophilicity upon irradiation of the hybrid structures with pulsed UV laser light. This behaviour is due to the well-known property of TiO2, that becomes superhydrophilic upon UV light irradiation. This property is reversible and we monitor the recovery of our hybrid polymeric/inorganic-nanorods structures to their initial hydrophobic character upon dark storage and heating. The wetting behaviour has been modelled and analysed according to the surface geometry. The direct implementation of such structures into microfluidics devices is demonstrated. Copyright © 2010 Inderscience Enterprises Ltd
Controlled Swapping of Nanocomposite Surface Wettability by Multilayer Photopolymerization
Single-layered photopolymerized nanocomposite films of polystyrene and TiO2 nanorods change their wetting characteristics from hydrophobic to hydrophilic when deposited on substrates with decreasing hydrophilicity. Interestingly, the addition of a second photopolymerized layer causes a swapping in the wettability, so that the final samples result converted from hydrophobic to hydrophilic or vice versa. The wettability characteristics continue to be swapped as the number of photopolymerized layers increases. In fact, odd-layered samples show the same wetting behavior as single-layered ones, while even-layered samples have the same surface characteristics as double-layered ones. Analytical surface studies demonstrate that all samples, independently of the number of layers, have similar low roughness, and that the wettability swap is due to the different concentration of the nanocomposites constituents on the samples surface. Particularly, the different interactions between the hydrophilic TiO2 nanorods and the underlying layer lead to different amounts of nanorods exposed on the nanocomposites surface. Moreover, due to the unique property of TiO2 to reversibly increase its wettability upon UV irradiation and subsequent storage, the wetting characteristics of the multilayered nanocomposites can be tuned in a reversible manner. In this way, a combination of substrate, number of photopolymerized layers, and external UV light stimulus can be used in order to precisely control the surface wettability properties of nanocomposite films, opening the way to a vast number of potential applications in microfluidics, protein assays, and cell growth
Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns.
Patterned polymeric coatings enriched with colloidal TiO(2) nanorods and prepared by photopolymerization are found to exhibit a remarkable increase in their water wettability when irradiated with UV laser light. The effect can be completely reversed using successive storage in vacuum and dark ambient environment. By exploiting the enhancement of the nanocomposites hydrophilicity upon UV irradiation, we prepare wettability gradients along the surfaces by irradiating adjacent surface areas with increasing time. The gradients are carefully designed to achieve directional movement of water drops along them, taking into account the hysteresis effect that opposes the movement as well as the change in the shape of the drop during its motion. The accomplishment of surface paths for liquid flow, along which the hydrophilicity gradually increases, opens the way to a vast number of potential applications in microfluidics
Determination of surface properties of various substrates using TiO2 nanorod coatings with tunable characteristics
We present a novel approach to cover different substrates with thin light-sensitive layers that consist of organic-capped TiO2 nanorods (NRs). Such NR-based coatings exhibit an increasing initial hydrophobicity with increasing NR length, and they demonstrate a surface transition from this highly hydrophobic state to a highly hydrophilic one under selective UV–laser irradiation. This behaviour is reversed under long dark storage. Infrared spectroscopy measurements reveal that light-driven wettability changes are accompanied by a progressive hydroxylation of the TiO2 surface. The surfactant molecules that cover the NRs do not appear to suffer for any significant photocatalytic degradation
Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures.
A colloidal seeded-growth strategy, relying on time-programmed delivery of selected stabilizing surfactants, has been developed to synthesize bimagnetic hybrid nanocrystals (HNCs) that consist of a single-crystal tetrapod-shaped skeleton of ferrimagnetic (FiM) iron oxide functionalized with multiple polycrystalline spherical domains of ferromagnetic (FM) Co. Due to the direct bonding interfaces formed between the two materials at the relevant junction regions, the HNCs exhibit FiM-FM exchange coupling, which transcribes into a rich scenario of significantly modified properties (not otherwise achievable with any of the single components or with their physical mixtures), including higher saturation magnetization and coercitivity values, exchange biasing, and enhanced thermal stability due to induced extra anisotropy. The availability of these new types of HNCs suggests that development of appropriate synthetic tools for arranging distinct material domains in predetermined spatial arrangements could lead to ..
Formation and magnetic manipulation of periodically aligned microchains in thin plastic membranes
We demonstrate the fabrication of polymeric membranes that incorporate a few layers of periodically aligned magnetic microchains formed upon the application of variable magnetic fields. A homogeneous solution containing an elastomeric polymer and a small amount of colloidal magnetic nanoparticles is spin coated on glass slides, thereby forming thin magnetic membranes of ca. 10 μm thickness. Subsequent application of a homogeneous magnetic field results in the orientation of the magnetic clusters and their further motion into the matrix along the field lines forming layers of aligned chains. The study of the kinetics of alignment demonstrates that the chains are formed in the first hour of exposure to the magnetic field. Above all, a detailed microscopy study reveals that the dimensions and the periodicity of the microchains are effectively controlled by the intensity of the magnetic field, in good agreement with the theoretical simulations. This ability to form and manipulate the size and the distribution of chains into the polymeric matrix gives the opportunity to develop multifunctional composite materials ready to be used in various applications such as electromagnetic shielding, or multifunctional magnetic membranes etc
- …