2,844 research outputs found

    Data acquisition systems with intelligent trigger capability

    Get PDF
    Two data acquisition systems, based on two solutions for improving the performance, are here presented. The first one, fully analog, is able to generate a voltage impulse at the occurrence of a transient phenomenon on the stationary waveform being monitored. In the second system the acquisition process is regulated by absolute value of the derivative of the signal under analysis. This system is realized with Field Programmable Gate Array technology. All theoretical relations underlying the proposed solutions are first discussed. Their most relevant hardware and software features are then described. A suitable measurement apparatus is set up for assessing the performance of both solutions, and the obtained results are finally given. (c) 2005 Elsevier Ltd. All rights reserved

    Smart monitoring system based on adaptive current control for superconducting cable test

    Get PDF
    A smart monitoring system for superconducting cable test is proposed with an adaptive currentcontrol of asuperconductingtransformer secondary. The design, based on Fuzzy Gain Scheduling, allows thecontrollerparameters to adapt continuously, and finely, to the working variations arising fromtransformer nonlineardynamics. The control system is integrated in a fully digital control loop, with all therelated benefits, i.e., high noise rejection, ease of implementation/modification, and soon. In particular, an accurate model of the system,controlled by aFuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaignthrough the working domain at several current ramp rates. The model performance wascharacterized by simulation, under all the main operating conditions, in order to guidethe controllerdesign. Finally, the proposed monitoring system was experimentally validated at EuropeanOrganization for Nuclear Research (CERN) in comparison to the state-of-the-artcontrol system[P. Arpaia, L. Bottura, G. Montenero, and S. LeNaour, “Performance improvement of a measurement station forsuperconductingcable test,” Rev. Sci. Instrum.83, 095111 (2012)] of theFacility for the Research on Superconducting Cables, achieving a significant performanceimprovement: a reduction in the system overshoot by 50%, with a related attenuationof the corresponding dynamic residual error (both absolute and RMS) up to 52%

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore