57 research outputs found

    Bid Regulates the Pathogenesis of Neurotropic Reovirus

    Get PDF
    Reovirus infection leads to apoptosis in both cultured cells and the murine central nervous system (CNS). NF-κB-driven transcription of proapoptotic cellular genes is required for the effector phase of the apoptotic response. Although both extrinsic death-receptor signaling pathways and intrinsic pathways involving mitochondrial injury are implicated in reovirus-induced apoptosis, mechanisms by which either of these pathways are activated and their relationship to NF-κB signaling following reovirus infection are unknown. The proapoptotic Bcl-2 family member, Bid, is activated by proteolytic cleavage following reovirus infection. To understand how reovirus integrates host signaling circuits to induce apoptosis, we examined proapoptotic signaling following infection of Bid-deficient cells. Although reovirus growth was not affected by the absence of Bid, cells lacking Bid failed to undergo apoptosis. Furthermore, we found that NF-κB activation is required for Bid cleavage and subsequent proapoptotic signaling. To examine the functional significance of Bid-dependent apoptosis in reovirus disease, we monitored fatal encephalitis caused by reovirus in the presence and absence of Bid. Survival of Bid-deficient mice was significantly enhanced in comparison to wild-type mice following either peroral or intracranial inoculation of reovirus. Decreased reovirus virulence in Bid-null mice was accompanied by a reduction in viral yield. These findings define a role for NF-κB-dependent cleavage of Bid in the cell death program initiated by viral infection and link Bid to viral virulence

    Imaging Poliovirus Entry in Live Cells

    Get PDF
    Viruses initiate infection by transferring their genetic material across a cellular membrane and into the appropriate compartment of the cell. The mechanisms by which animal viruses, especially nonenveloped viruses, deliver their genomes are only poorly understood. This is due in part to technical difficulties involved in direct visualization of viral gene delivery and to uncertainties in distinguishing productive and nonproductive pathways caused by the high particle-to–plaque forming unit ratio of most animal viruses. Here, we combine an imaging assay that simultaneously tracks the viral capsid and genome in live cells with an infectivity-based assay for RNA release to characterize the early events in the poliovirus (PV) infection. Effects on RNA genome delivery from inhibitors of cell trafficking pathways were probed systematically by both methods. Surprisingly, we observe that genome release by PV is highly efficient and rapid, and thus does not limit the overall infectivity or the infection rate. The results define a pathway in which PV binds to receptors on the cell surface and enters the cell by a clathrin-, caveolin-, flotillin-, and microtubule-independent, but tyrosine kinase- and actin-dependent, endocytic mechanism. Immediately after the internalization of the virus particle, genome release takes place from vesicles or tightly sealed membrane invaginations located within 100–200 nm of the plasma membrane. These results settle a long-lasting debate of whether PV directly breaks the plasma membrane barrier or relies on endocytosis to deliver its genome into the cell. We expect this imaging assay to be broadly applicable to the investigation of entry mechanisms for nonenveloped viruses

    Independent Regulation of Reovirus Membrane Penetration and Apoptosis by the μ1 ϕ Domain

    Get PDF
    Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein μ1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of μ1 indicates that the μ1 ϕ domain is sufficient to elicit a cell death response. To evaluate the contribution of the μ1 ϕ domain to the induction of apoptosis following reovirus infection, ϕ mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in ϕ diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in ϕ affect the apoptotic potential of reovirus, suggesting that ϕ initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective ϕ mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the ϕ domain of μ1 plays an important regulatory role in reovirus-induced apoptosis and disease

    The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

    Get PDF
    Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al

    Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis

    Get PDF
    Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host–apoptosis–virus triangle

    Human SCARB2-Mediated Entry and Endocytosis of EV71

    Get PDF
    Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus

    Wege des Viruseintritts: am Beispiel der Erkältungsviren

    Get PDF

    Reovirus μ1 Protein Affects Infectivity by Altering Virus-Receptor Interactions

    No full text
    corecore