138 research outputs found

    Effects of Fe doping in La1/2Ca1/2MnO3

    Full text link
    The effect of Fe doping in the Mn site on the magnetic, transport and structural properties of polycrystalline La1/2Ca1/2MnO3 was studied. Doping with low Fe concentration (< 10%) strongly affects electrical transport and magnetization. Long range charge order is disrupted even for the lowest doping level studied (~2%). For Fe concentration up to 5% a ferromagnetic state develops at low temperature with metallic like conduction and thermal hysteresis. In this range, the Curie temperature decreases monotonously as a function of Fe doping. Insulating behavior and a sudden depression of the ferromagnetic state is observed by further Fe doping.Comment: 2 pages, presented at ICM2000, to appear in JMM

    Critical structure factor in Ising systems

    Get PDF
    We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic lattices of size L^3 with L=128 and 256. We determine the corresponding structure factor (Fourier transform of the two-point function) and compare it with several approximations and with experimental results. We also compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the deviations from the Ornstein-Zernicke expression of Puglielli and Ford.Comment: 16 page

    Kitaev interactions in the Co honeycomb antiferromagnets Na3Co2SbO6 and Na2Co2TeO6

    Get PDF
    Co2+^{2+} ions in an octahedral crystal field, stabilise a jeff_{eff} = 1/2 ground state with an orbital degree of freedom and have been recently put forward for realising Kitaev interactions, a prediction we have tested by investigating spin dynamics in two cobalt honeycomb lattice compounds, Na2_2Co2_2TeO6_6 and Na3_3Co2_2SbO6_6, using inelastic neutron scattering. We used linear spin wave theory to show that the magnetic spectra can be reproduced with a spin Hamiltonian including a dominant Kitaev nearest-neighbour interaction, weaker Heisenberg interactions up to the third neighbour and bond-dependent off-diagonal exchange interactions. Beyond the Kitaev interaction that alone would induce a quantum spin liquid state, the presence of these additional couplings is responsible for the zigzag-type long-range magnetic ordering observed at low temperature in both compounds. These results provide evidence for the realization of Kitaev-type coupling in cobalt-based materials, despite hosting a weaker spin-orbit coupling than their 4d and 5d counterparts

    Magnetisation Studies of Geometrically Frustrated Antiferromagnets SrLn2O4, with Ln = Er, Dy and Ho

    Full text link
    We present the results of susceptibility \chi(T) and magnetisation M(H) measurements performed on single crystal samples of the rare-earth oxides SrLn2O4 (Ln = Er, Dy and Ho). The measurements reveal the presence of magnetic ordering transition in SrHo2O4 at 0.62 K and confirm that SrEr2O4 orders magnetically at 0.73 K, while in SrDy2O4 such a transition is absent down to at least 0.5 K. The observed ordering temperatures are significantly lower than the Curie-Weiss temperatures, \theta_{CW}, obtained from the high-temperature linear fits to the 1/\chi(T) curves, which implies that these materials are subject to geometric frustration. Strong anisotropy found in the \chi(T) curves for a field applied along the different crystallographic directions is also evident in the M(H) curves measured both above and below the ordering temperatures. For all three compounds the magnetisation plateaux at approximately one third of the magnetisation saturation values can be seen for certain directions of applied field, which is indicative of field-induced stabilisation of a collinear {\it two-up one-down} structure.Comment: 6 pages, 6 figure

    Phase Competition in Ln0.5a0.5mno3 Perovskites

    Full text link
    Single crystals of the systems Pr0.5(Ca1-xSrx)0.5MnO3, (Pr1-yYy)0.5(Ca1-xSrx)0.5MnO3, and Sm0.5Sr0.5MnO3 were grown to provide a series of samples with fixed ratio Mn(III)/Mn(IV)=1 having geometric tolerance factors that span the transition from localized to itinerant electronic behavior of the MnO3 array. A unique ferromagnetic phase appears at the critical tolerance factor tc= 0.975 that separates charge ordering and localized-electron behavior for t<tc from itinerant or molecular-orbital behavior for t>tc. This ferromagnetic phase, which has to be distinguished from the ferromagnetic metallic phase stabilized at tolerance factors t>tc, separates two distinguishable Type-CE antiferromagnetic phases that are metamagnetic. Measurements of the transport properties under hydrostatic pressure were carried out on a compositions t a little below tc in order to compare the effects of chemical vs. hydrostatic pressure on the phases that compete with one another near t=tc.Comment: 10 pages. To be publised in Phys. Rev.

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: Îł=1.2371(4)\gamma=1.2371(4), Îœ=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), ÎČ=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A

    Suppression of charge-ordering and appearance of magnetoresistance in a spin-cluster glass manganite La0.3Ca0.7Mn0.8Cr0.2O3

    Full text link
    The magnetic properties of electron-doped manganite La0.3Ca0.7MnO3 and La0.3Ca0.7Mn0.8Cr0.2O3 polycrystalline samples prepared by sol-gel technique have been investigated between 5 and 300 K in magnetic fields ranging from 0 to 5 T. The transition at 260 K, attributed to charge ordering in La0.3Ca0.7MnO3, is completely suppressed in the Cr-substituted sample while the onset of a magnetic remanence followed by the appearance of a magnetic irreversibility at lower temperatures is observed in both samples. These features indicate that ferromagnetic clusters coexist with either an antiferromagnetic phase for La0.3Ca0.7MnO3 or a spin-cluster glass phase for La0.3Ca0.7Mn0.8Cr0.2O3 at the lowest temperatures. The exponential temperature dependence of the resistivity for the Cr-substituted sample is consistent with the small polaron hopping model for 120 K < T < 300 K, while the data are better described by Mott's hopping mechanism for T < 120 K. Whereas the parent compound La0.3Ca0.7MnO3 is known to show no magnetoresistance, a large negative magnetoresistance is observed in the La0.3Ca0.7Mn0.8Cr0.2O3 sample below 120 K. The appearance of the CMR is attributed to spin dependent hopping between spin clusters and/or between ferromagnetic domains

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    • 

    corecore