14,740 research outputs found
On Sasaki-Einstein manifolds in dimension five
We prove the existence of Sasaki-Einstein metrics on certain simply connected
5-manifolds where until now existence was unknown. All of these manifolds have
non-trivial torsion classes. On several of these we show that there are a
countable infinity of deformation classes of Sasaki-Einstein structures.Comment: 18 pages, Exposition was expanded and a reference adde
Self-organization, scaling and collapse in a coupled automaton model of foragers and vegetation resources with seed dispersal
We introduce a model of traveling agents ({\it e.g.} frugivorous animals) who
feed on randomly located vegetation patches and disperse their seeds, thus
modifying the spatial distribution of resources in the long term. It is assumed
that the survival probability of a seed increases with the distance to the
parent patch and decreases with the size of the colonized patch. In turn, the
foraging agents use a deterministic strategy with memory, that makes them visit
the largest possible patches accessible within minimal travelling distances.
The combination of these interactions produce complex spatio-temporal patterns.
If the patches have a small initial size, the vegetation total mass (biomass)
increases with time and reaches a maximum corresponding to a self-organized
critical state with power-law distributed patch sizes and L\'evy-like movement
patterns for the foragers. However, this state collapses as the biomass sharply
decreases to reach a noisy stationary regime characterized by corrections to
scaling. In systems with low plant competition, the efficiency of the foraging
rules leads to the formation of heterogeneous vegetation patterns with
frequency spectra, and contributes, rather counter-intuitively,
to lower the biomass levels.Comment: 11 pages, 5 figure
Strong low-frequency quantum correlations from a four-wave mixing amplifier
We show that a simple scheme based on nondegenerate four-wave mixing in a hot
atomic vapor behaves like a near-perfect phase-insensitive optical amplifier,
which can generate bright twin beams with a measured quantum noise reduction in
the intensity difference of more than 8 dB, close to the best optical
parametric amplifiers and oscillators. The absence of a cavity makes the system
immune to external perturbations, and the strong quantum noise reduction is
observed over a large frequency range.Comment: 4 pages, 4 figures. Major rewrite of the previous version. New
experimental results and further analysi
Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation
By numerical calculation, the Planck spectrum with zero-point radiation is
shown to satisfy a natural maximum-entropy principle whereas alternative
choices of spectra do not. Specifically, if we consider a set of
conducting-walled boxes, each with a partition placed at a different location
in the box, so that across the collection of boxes the partitions are uniformly
spaced across the volume, then the Planck spectrum correspond to that spectrum
of random radiation (having constant energy kT per normal mode at low
frequencies and zero-point energy (1/2)hw per normal mode at high frequencies)
which gives maximum uniformity across the collection of boxes for the radiation
energy per box. The analysis involves Casimir energies and zero-point radiation
which do not usually appear in thermodynamic analyses. For simplicity, the
analysis is presented for waves in one space dimension.Comment: 11 page
Weakly nonlinear theory of grain boundary motion in patterns with crystalline symmetry
We study the motion of a grain boundary separating two otherwise stationary
domains of hexagonal symmetry. Starting from an order parameter equation
appropriate for hexagonal patterns, a multiple scale analysis leads to an
analytical equation of motion for the boundary that shares many properties with
that of a crystalline solid. We find that defect motion is generically opposed
by a pinning force that arises from non-adiabatic corrections to the standard
amplitude equation. The magnitude of this force depends sharply on the
mis-orientation angle between adjacent domains so that the most easily pinned
grain boundaries are those with an angle between four and eight degrees.
Although pinning effects may be small, they do not vanish asymptotically near
the onset of this subcritical bifurcation, and can be orders of magnitude
larger than those present in smectic phases that bifurcate supercritically
Modeling the mobility of living organisms in heterogeneous landscapes: Does memory improve foraging success?
Thanks to recent technological advances, it is now possible to track with an
unprecedented precision and for long periods of time the movement patterns of
many living organisms in their habitat. The increasing amount of data available
on single trajectories offers the possibility of understanding how animals move
and of testing basic movement models. Random walks have long represented the
main description for micro-organisms and have also been useful to understand
the foraging behaviour of large animals. Nevertheless, most vertebrates, in
particular humans and other primates, rely on sophisticated cognitive tools
such as spatial maps, episodic memory and travel cost discounting. These
properties call for other modeling approaches of mobility patterns. We propose
a foraging framework where a learning mobile agent uses a combination of
memory-based and random steps. We investigate how advantageous it is to use
memory for exploiting resources in heterogeneous and changing environments. An
adequate balance of determinism and random exploration is found to maximize the
foraging efficiency and to generate trajectories with an intricate
spatio-temporal order. Based on this approach, we propose some tools for
analysing the non-random nature of mobility patterns in general.Comment: 14 pages, 4 figures, improved discussio
Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect
The formulae for Planck length, Hawking temperature and Unruh-Davies
temperature are derived by using only laws of classical physics together with
the Heisenberg principle. Besides, it is shown how the Hawking relation can be
deduced from the Unruh relation by means of the principle of equivalence; the
deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure
On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds
The stars in the Magellanic Clouds with the largest degree of obscuration are
used to probe the highly uncertain physics of stars in the asymptotic giant
branch (AGB) phase of evolution. Carbon stars in particular, provide key
information on the amount of third dredge-up (TDU) and mass loss. We use two
independent stellar evolution codes to test how a different treatment of the
physics affects the evolution on the AGB. The output from the two codes are
used to determine the rates of dust formation in the circumstellar envelope,
where the method used to determine the dust is the same for each case. The
stars with the largest degree of obscuration in the LMC and SMC are identified
as the progeny of objects of initial mass and , respectively. This difference in mass is motivated by the
difference in the star formation histories of the two galaxies, and offers a
simple explanation of the redder infrared colours of C-stars in the LMC
compared to their counterparts in the SMC. The comparison with the Spitzer
colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass
fraction must have been reached by stars of initial
mass around . Our results confirm the necessity of adopting
low-temperature opacities in stellar evolutionary models of AGB stars. These
opacities allow the stars to obtain mass-loss rates high enough () to produce the amount of dust needed to reproduce the
Spitzer coloursComment: 14 pages, 5 figures, 1 table; accepted for publication in MNRAS Main
Journa
Preparation of GHZ states via Grover's quantum searching algorithm
In this paper we propose an approach to prepare GHZ states of an arbitrary
multi-particle system in terms of Grover's fast quantum searching algorithm.
This approach can be regarded as an extension of the Grover's algorithm to
find one or more items in an unsorted database.Comment: 9 pages, Email address: [email protected]
Homogeneous heterotic supergravity solutions with linear dilaton
I construct solutions to the heterotic supergravity BPS-equations on products
of Minkowski space with a non-symmetric coset. All of the bosonic fields are
homogeneous and non-vanishing, the dilaton being a linear function on the
non-compact part of spacetime.Comment: 36 pages; v2 conclusion updated and references adde
- …
