7,071 research outputs found

    An Adaptation To Life In Acid Through A Novel Mevalonate Pathway.

    Get PDF
    Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments

    Generating-function method for fusion rules

    Full text link
    This is the second of two articles devoted to an exposition of the generating-function method for computing fusion rules in affine Lie algebras. The present paper focuses on fusion rules, using the machinery developed for tensor products in the companion article. Although the Kac-Walton algorithm provides a method for constructing a fusion generating function from the corresponding tensor-product generating function, we describe a more powerful approach which starts by first defining the set of fusion elementary couplings from a natural extension of the set of tensor-product elementary couplings. A set of inequalities involving the level are derived from this set using Farkas' lemma. These inequalities, taken in conjunction with the inequalities defining the tensor products, define what we call the fusion basis. Given this basis, the machinery of our previous paper may be applied to construct the fusion generating function. New generating functions for sp(4) and su(4), together with a closed form expression for their threshold levels are presented.Comment: Harvmac (b mode : 47 p) and Pictex; to appear in J. Math. Phy

    Generating-function method for tensor products

    Full text link
    This is the first of two articles devoted to a exposition of the generating-function method for computing fusion rules in affine Lie algebras. The present paper is entirely devoted to the study of the tensor-product (infinite-level) limit of fusions rules. We start by reviewing Sharp's character method. An alternative approach to the construction of tensor-product generating functions is then presented which overcomes most of the technical difficulties associated with the character method. It is based on the reformulation of the problem of calculating tensor products in terms of the solution of a set of linear and homogeneous Diophantine equations whose elementary solutions represent ``elementary couplings''. Grobner bases provide a tool for generating the complete set of relations between elementary couplings and, most importantly, as an algorithm for specifying a complete, compatible set of ``forbidden couplings''.Comment: Harvmac (b mode : 39 p) and Pictex; this is a substantially reduced version of hep-th/9811113 (with new title); to appear in J. Math. Phy

    Optimal Capital Utilization by Financial Firms: Evidence from the Property-Liability Insurance Industry

    Get PDF
    Capitalization levels in the property-liability insurance industry have increased dramatically in recent years—the capital-to-assets ratio rose from 25% in 1989 to 35% by 1999. This paper investigates the use of capital by insurers to provide evidence on whether the capital increase represents a legitimate response to changing market conditions or a true inefficiency that leads to performance penalties for insurers. We estimate “best practice” technical, cost, and revenue frontiers for a sample of insurers over the period 1993–1998, using data envelopment analysis, a non-parametric technique. The results indicate that most insurers significantly over-utilized equity capital during the sample period. Regression analysis provides evidence that capital over-utilization primarily represents an inefficiency for which insurers incur significant revenue penalties
    • …
    corecore