8,235 research outputs found

    A community of teachers: Using Activity Theory to investigate the implementation of ICTE in a remote Indigenous school

    Get PDF
    In 2001-2002, an innovative project entitled Reach In-Reach Out has been conducted in Far North Queensland. Its aim was to use telecommunications and Internet tools to facilitate communication between the children of Lockhart River who attend secondary school in such centres as Cairns, Townsville and Herberton and their families. This study was the first (of three) to investigate the impact of this project. Its focus is on the teachers of Lockart River State School and the changes made to their practice by the implementation of the project. The study described in this paper was conducted in Lockhart River which is situated on Kanthanumpu (Southern Kuuku Ya'u) land in Far North Queensland. The current population is estimated between 650 (Education Queensland, 2001a) and 800 (Lockhart River Land and Sea Management Agency, 2001) residents. The student population of Lockhart River State School in 2001was 26 (Kindy), 105 (Primary) and 30 (Alternate secondary/VET) programs) (Education Queensland, 2001a). At the end of 1999, the secondary school of Lockhart River was closed following a community decision to do so. This necessitated the majority of post-primary students having to leave Lockhart River to continue their education at boarding school. At the beginning of 2002, 38 students left the Lockhart River Community to attend boarding schools (and 8 remained to take part in the Alternate Secondary/VET program offered at the school). Table 1 details the secondary enrolments of Lockhart River students from 1998 to 2001, including the period covered by this study (2001)

    Observation of atom wave phase shifts induced by van der Waals atom-surface interactions

    Full text link
    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by quantum electrodynamics for a non-retarded van der Waals interaction. This experiment also demonstrates that atom-waves can retain their coherence even when atom-surface distances are as small as 10 nm.Comment: 4 pages, 4 figures, submitted to PR

    The impact of sleep quality on cognitive functioning in Parkinson's disease

    Full text link
    In healthy individuals and those with insomnia, poor sleep quality is associated with decrements in performance on tests of cognition, especially executive function. Sleep disturbances and cognitive deficits are both prevalent in Parkinson's disease (PD). Sleep problems occur in over 75% of patients, with sleep fragmentation and decreased sleep efficiency being the most common sleep complaints, but their relation to cognition is unknown. We examined the association between sleep quality and cognition in PD. In 35 non-demented individuals with PD and 18 normal control adults (NC), sleep was measured using 24-hr wrist actigraphy over 7 days. Cognitive domains tested included attention and executive function, memory and psychomotor function. In both groups, poor sleep was associated with worse performance on tests of attention/executive function but not memory or psychomotor function. In the PD group, attention/executive function was predicted by sleep efficiency, whereas memory and psychomotor function were not predicted by sleep quality. Psychomotor and memory function were predicted by motor symptom severity. This study is the first to demonstrate that sleep quality in PD is significantly correlated with cognition and that it differentially impacts attention and executive function, thereby furthering our understanding of the link between sleep and cognition.Published versio

    The impact of sleep quality on cognitive functioning in Parkinson's disease

    Get PDF
    In healthy individuals and those with insomnia, poor sleep quality is associated with decrements in performance on tests of cognition, especially executive function. Sleep disturbances and cognitive deficits are both prevalent in Parkinson's disease (PD). Sleep problems occur in over 75% of patients, with sleep fragmentation and decreased sleep efficiency being the most common sleep complaints, but their relation to cognition is unknown. We examined the association between sleep quality and cognition in PD. In 35 non-demented individuals with PD and 18 normal control adults (NC), sleep was measured using 24-hr wrist actigraphy over 7 days. Cognitive domains tested included attention and executive function, memory and psychomotor function. In both groups, poor sleep was associated with worse performance on tests of attention/executive function but not memory or psychomotor function. In the PD group, attention/executive function was predicted by sleep efficiency, whereas memory and psychomotor function were not predicted by sleep quality. Psychomotor and memory function were predicted by motor symptom severity. This study is the first to demonstrate that sleep quality in PD is significantly correlated with cognition and that it differentially impacts attention and executive function, thereby furthering our understanding of the link between sleep and cognition.Published versio

    Explaining variation in insect herbivore control over plant communities

    Get PDF
    Research has repeatedly demonstrated that herbivores can, at some times and in some places, control the distribution and abundance of plants. Consequently, explaining variation in herbivore control over plant communities is a central goal in ecology and evolutionary biology. Two major challenges have prevented theoretical progress in this area of research. First, although there are numerous hypotheses that attempt to explain variation in herbivore control over plant communities, theoretical reviews have focused on a single hypothesis. Thus, it has been unclear where these herbivore control hypotheses diverge in their predictions and rationale. Second, herbivore control hypotheses base their explanations on highly correlated vegetation characteristics, namely net primary productivity (NPP), plant vigor, plant apparency, plant tissue nitrogen, plant defenses, plant tolerance, and host plant concentration. Consequently, interpretations of field experiments and meta-analyses have been equivocal. To address the first problem, I simultaneously reviewed herbivore control hypotheses and their predictions and rationale. I demonstrate that these hypotheses can be synthesized into four central hypotheses based on NPP, plant size, resource availability, and host stem density. This provides researchers with few vs. many herbivore control hypotheses. To address the second problem, I simultaneously tested these hypotheses by experimentally manipulating resource availability, total stem density, plant species composition, and herbivore abundance under field conditions. I then monitored the response of herbivore abundance, damage to plants, and the reduction in plant mass due to herbivory. The experiments demonstrated that herbivory caused the strongest reductions in mean stem mass where per stem resource availability was lowest, regardless of where herbivore abundance and damage was greatest. This result supports the plant tolerance based resource availability hypothesis, which assumes that the ability of plants to tolerate herbivory increases as resource availability increases. In addition, herbivore control over both simple plant communities (i.e., monocultures) and complex plant communities (i.e., polycultures) was due to herbivory on the dominant plant species, Solidago canadensis. Together, these results suggest that future herbivore control hypotheses should focus on the effect of per-capita resource availability on the ability of dominant plants to tolerate herbivory

    Consumer Remedies for Defective Computer Software

    Get PDF

    The utilization of metal-ligand cooperativity for electrocatalytic reduction and catalytic hydration.

    Get PDF
    Small molecules are building blocks for developing larger materials. These small molecules could be extremely small, such as hydrogen, or larger such as a nitrile, but their impact on the global economy is massive. This dissertation describes a catalyst for three reactions involving small molecules; 1) the hydrogen evolution reaction, 2) the carbon dioxide reduction reaction, 3) nitrile hydration. The catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) use “metal-ligand cooperativity” between the Lewis acid Zn(II) metal ion and an uncoordinated Lewis base nitrogen in the ligand framework to activate substrates. The complex has been analyzed via NMR, UV/Vis, single crystal X-ray crystallography, electrochemical methods, XPS and computationally. Chapter three discusses the ability of Zn(DMTH) and the methylated form Zn(DMTMH) to utilize solution protons to generate H2. Zn(DMTH) and Zn(DMTMH) have similar turnover frequencies (TOF) of ~7000 s-1, but their overpotential differs by ~700 mV. The overpotential difference is determined to be from both electronic effects, and proton rearrangement. These differences are supported by control experiments, computational work (DFT), and isolation of valuable intermediates. Chapter four focuses on the ability of Zn(DMTH) to activate CO2 for reduction to formate. The catalyst has a TOF of ~70 s-1 albeit at a large overpotential (0.9V). The catalyst is also shown to work at lower operating potentials by using an electrochemical hydride (Pt) and a chemical hydride (NaBH4). Zn(DMTH) operates in an unprecedented mechanism where it utilizes metal-ligand cooperativity to deprotonate a methanol where CO2 insertion occurs. This ability allows Zn(DMTH) to bind CO2 directly from air, making it the first CO2 reduction catalyst that can do this. Chapter five expands upon this idea of metal-ligand cooperativity to activate methanol, by using the same process to activate water. This activation of water is shown by the generation of amides from nitriles. Zn(DMTH) behaves as a nitrile hydration catalyst with a large quantity of nitriles including difficult to hydrate nitriles. Optimization reactions occurred with acetonitrile with a TOF of almost 50 h-1 at 0°C. Analysis of thermodynamic parameters indicate a mechanism with contributions from multiple steps

    Measuring the Impact of Genetic and Environmental Risk and Protective Factors on Speech, Language, and Communication Development-Evidence from Australia

    Full text link
    Speech and language acquisition is one of the key development indicators of optimal literacy development in infancy and early childhood. Over the last decade there has been increasing interest in the development of theoretical frameworks which underpin the underlying complexity of a child's language developmental landscapes. This longitudinal study aims to measure the impact of genetic and environmental risk and protective factors on speech, language, and communication development (SLCN) among 5000 infants in Australia. Using robust panel fixed-effects models, the results demonstrate that there are clear and consistent effects of protective factors and SLCN associated with the infant's family [coefficient (SD) = 0.153, 95% standard error (SE) = 8.76], the in utero environment [coefficient (SD) = 0.055, standard error (SE) = 3.29] and early infant health [coefficient (SD) = 0.074, standard error (SE) = 5.28]. The impact of family and in utero health is dominant at aged 2 to 3 years (relative to 0 to 1 years) across the domains of language and communication and more dominant from birth to 1 years for speech acquisition. In contrast, the evidence for the impact of genetics on SLCN acquisition in infancy, is less clear. The evidence from this study can be used to inform intervention policies

    Measurement of atomic diffraction phases induced by material gratings

    Full text link
    Atom-surface interactions can significantly modify the intensity and phase of atom de Broglie waves diffracted by a silicon nitride grating. This affects the operation of a material grating as a coherent beam splitter. The phase shift induced by diffraction is measured by comparing the relative phases of serveral interfering paths in a Mach-Zehnder Na atom interferometer formed by three material gratings. The values of the diffraction phases are consistent with a simple model which includes a van der Waals atom-surface interaction between the Na atoms and the silicon nitride grating bars.Comment: 4 pages, 5 figures, submitted to PR
    • …
    corecore