1,033 research outputs found

    Amine-terminated nanoparticle films: pattern deposition by a simple nanostencilling technique and stability studies under X-ray irradiation

    Get PDF
    Exploring the surface chemistry of nanopatterned amine-terminated nanoparticle films.</p

    Predicting soil moisture conditions for arable free draining soils in Ireland under spring cereal crop production

    Get PDF
    peer-reviewedTemporal prediction of soil moisture and evapotranspiration has a crucial role in agricultural and environmental management. A lack of Irish models for predicting evapotranspiration and soil moisture conditions for arable soils still represents a knowledge gap in this particular area of Irish agro-climatic modelling. The soil moisture deficit (SMD) crop model presented in this paper is based on the SMD hybrid model for Irish grassland (Schulte et al., 2005). Crop and site specific components (free-draining soil) have been integrated in the new model, which was calibrated and tested using soil tension measurements from two experimental sites located on a well-drained soil under spring barley cultivation in south-eastern Ireland. Calibration of the model gave an R2 of 0.71 for the relationship between predicted SMD and measured soil tension, while model testing yielded R2 values of 0.67 and 0.65 (two sites). The crop model presented here is designed to predict soil moisture conditions and effective drainage (i.e., leaching events). The model provided reasonable predictions of soil moisture conditions and effective drainage within its boundaries, i.e., free-draining land used for spring cereal production under Irish conditions. In general, the model is simple and practical due to the small number of required input parameters, and due to model outputs that have good practical applicability, such as for computing the cumulative amount of watersoluble nutrients leached from arable land under spring cereals in free-draining soils

    Cognitive transfer of spatial awareness states from immersive virtual environments to reality.

    Get PDF
    An individual's prior experience will influence how new visual information in a scene is perceived and remembered. Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual fidelity of training environments on the transfer of training to the real-world after exposure to immersive simulations representing a real-world scene. A between groups experiment was carried out to explore the effect of rendering quality on measurements of location-based recognition memory for objects and associated states of awareness. The immersive simulation, consisted of one room that was either rendered flat-shaded or using radiosity rendering. The simulation was displayed on a stereo head-tracked Head Mounted Display. Post exposure to the synthetic simulation, participants completed a memory recognition task conducted in a real-world scene by physically arranging objects in their physical form in a real world room. Participants also reported one of four states of awareness following object recognition. They were given several options of awareness states that reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and related guesses. The scene incorporated objects that 'fitted' into the specific context of the real-world scene, referred to as consistent objects, and objects which were not related to the specific context of the real-world scene, referred to as inconsistent objects. A follow-up study was conducted a week after the initial test. Interestingly, results revealed a higher proportion of correct object recognition associated with mental imagery when participants were exposed to low fidelity flat-shaded training scenes rather than the radiosity rendered ones. Memory psychology indicates that awareness states based on visual imagery require stronger attentional processing in the first instance than those based on familiarity. A tentative claim would therefore be that those immersive environments that are distinctive because of their variation from 'real', such as flat-shaded environments, recruit stronger attentional resources. This additional attentional processing may bring about a change in participants' subjective experiences of 'remembering' when they later transfer the training from that environment into a real-world situation

    Identifying the magnetotail lobes with Cluster magnetometer data

    Get PDF
    We describe a novel method for identifying times when a spacecraft is in Earth’s magnetotail lobes solely using magnetometer data. We propose that lobe intervals can be well identified as times when the magnetic field is strong and relatively invariant, defined using thresholds in the magnitude of BX and the standard deviation σ of the magnetic field magnitude. Using data from the Cluster spacecraft at downtail distances greater than 8 RE during 2001–2009, we find that thresholds of 30 nT and 3.5 nT, respectively, optimize agreement with a previous, independently derived lobe identification method that used both magnetic and plasma data over the same interval. Specifically, our method has a moderately high accuracy (66%) and a low probability of false detection (11%) in comparison to the other method. Furthermore, our method identifies the lobe on many other occasions when the previous method was unable to make any identification and yields longer continuous intervals in the lobe than the previous method, with intervals at the 90th percentile being triple the length. Our method also allows for analyses of the lobes outside the time span of the previous method

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure
    corecore