738 research outputs found
An asymptotic bound for secant varieties of Segre varieties
This paper studies the defectivity of secant varieties of Segre varieties. We
prove that there exists an asymptotic lower estimate for the greater
non-defective secant variety (without filling the ambient space) of any given
Segre variety. In particular, we prove that the ratio between the greater
non-defective secant variety of a Segre variety and its expected rank is lower
bounded by a value depending just on the number of factors of the Segre
variety. Moreover, in the final section, we present some results obtained by
explicit computation, proving the non-defectivity of all the secant varieties
of Segre varieties of the shape (P^n)^4, with 1 < n < 11, except at most
\sigma_199((P^8)^4) and \sigma_357((P^10)^4).Comment: 14 page
Finding Exogenous Variables in Data with Many More Variables than Observations
Many statistical methods have been proposed to estimate causal models in
classical situations with fewer variables than observations (p<n, p: the number
of variables and n: the number of observations). However, modern datasets
including gene expression data need high-dimensional causal modeling in
challenging situations with orders of magnitude more variables than
observations (p>>n). In this paper, we propose a method to find exogenous
variables in a linear non-Gaussian causal model, which requires much smaller
sample sizes than conventional methods and works even when p>>n. The key idea
is to identify which variables are exogenous based on non-Gaussianity instead
of estimating the entire structure of the model. Exogenous variables work as
triggers that activate a causal chain in the model, and their identification
leads to more efficient experimental designs and better understanding of the
causal mechanism. We present experiments with artificial data and real-world
gene expression data to evaluate the method.Comment: A revised version of this was published in Proc. ICANN201
A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the Orientation Distribution Function in Diffusion MRI
International audienceIn this paper we extract the geometric characteristics from an antipodally symmetric spherical function (ASSF), which can be de- scribed equivalently in the spherical harmonic (SH) basis, in the symmet- ric tensor (ST) basis constrained to the sphere, and in the homogeneous polynomial (HP) basis constrained to the sphere. All three bases span the same vector space and are bijective when the rank of the SH series equals the order of the ST and equals the degree of the HP. We show, therefore, how it is possible to extract the maxima and minima of an ASSF by computing the stationary points of a constrained HP. In Diffusion MRI, the Orientation Distribution Function (ODF), repre- sents a state of the art reconstruction method whose maxima are aligned with the dominant fiber bundles. It is, therefore, important to be able to correctly estimate these maxima to detect the fiber directions. The ODF is an ASSF. To illustrate the potential of our method, we take up the example of the ODF, and extract its maxima to detect the fiber directions. Thanks to our method we are able to extract the maxima without limiting our search to a discrete set of values on the sphere, but by searching the maxima of a continuous function. Our method is also general, not dependent on the ODF, and the framework we present can be applied to any ASSF described in one of the three bases
A Canonical Genetic Algorithm for Blind Inversion of Linear Channels
It is well known the relationship between source separation and blind
deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal
independence between samples can be used to retrieve the original signal,
in the same manner as spatial independence is used for source separation. In
this paper we propose the use of a Genetic Algorithm (GA) to blindly invert
linear channels. The use of GA is justified in the case of small number of samples,
where other gradient-like methods fails because of poor estimation of statistics
Forward Analysis and Model Checking for Trace Bounded WSTS
We investigate a subclass of well-structured transition systems (WSTS), the
bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete
deterministic ones, which we claim provide an adequate basis for the study of
forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth.
Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered
previously for the termination of forward analysis, boundedness is decidable.
Boundedness turns out to be a valuable restriction for WSTS verification, as we
show that it further allows to decide all -regular properties on the
set of infinite traces of the system
Decomposition of homogeneous polynomials with low rank
Let be a homogeneous polynomial of degree in variables defined
over an algebraically closed field of characteristic zero and suppose that
belongs to the -th secant varieties of the standard Veronese variety
but that its minimal
decomposition as a sum of -th powers of linear forms is
with . We show that if then such a
decomposition of can be split in two parts: one of them is made by linear
forms that can be written using only two variables, the other part is uniquely
determined once one has fixed the first part. We also obtain a uniqueness
theorem for the minimal decomposition of if the rank is at most and a
mild condition is satisfied.Comment: final version. Math. Z. (to appear
Fourier PCA and Robust Tensor Decomposition
Fourier PCA is Principal Component Analysis of a matrix obtained from higher
order derivatives of the logarithm of the Fourier transform of a
distribution.We make this method algorithmic by developing a tensor
decomposition method for a pair of tensors sharing the same vectors in rank-
decompositions. Our main application is the first provably polynomial-time
algorithm for underdetermined ICA, i.e., learning an matrix
from observations where is drawn from an unknown product
distribution with arbitrary non-Gaussian components. The number of component
distributions can be arbitrarily higher than the dimension and the
columns of only need to satisfy a natural and efficiently verifiable
nondegeneracy condition. As a second application, we give an alternative
algorithm for learning mixtures of spherical Gaussians with linearly
independent means. These results also hold in the presence of Gaussian noise.Comment: Extensively revised; details added; minor errors corrected;
exposition improve
Quantum and random walks as universal generators of probability distributions
Quantum walks and random walks bear similarities and divergences. One of the
most remarkable disparities affects the probability of finding the particle at
a given location: typically, almost a flat function in the first case and a
bell-shaped one in the second case. Here I show how one can impose any desired
stochastic behavior (compatible with the continuity equation for the
probability function) on both systems by the appropriate choice of time- and
site-dependent coins. This implies, in particular, that one can devise quantum
walks that show diffusive spreading without loosing coherence, as well as
random walks that exhibit the characteristic fast propagation of a quantum
particle driven by a Hadamard coin.Comment: 8 pages, 2 figures; revised and enlarged versio
On Invariant Notions of Segre Varieties in Binary Projective Spaces
Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1,
2) that are direct products of copies of PG(1, 2), being any positive
integer, are established and studied. We first demonstrate that there exists a
hyperbolic quadric that contains \Segrem(2) and is invariant under its
projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into
\PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant
under \Stab{m}{2} as well. Such a basis can be split into two subsets whose
spans are either real or complex-conjugate subspaces according as is even
or odd. In the latter case, these spans can, in addition, be viewed as
indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m
- 1, 2). This spread is also related with a \Stab{m}{2}-invariant
non-singular Hermitian variety. The case is examined in detail to
illustrate the theory. Here, the lines of the invariant spread are found to
fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7,
2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and
Cryptograph
Four lectures on secant varieties
This paper is based on the first author's lectures at the 2012 University of
Regina Workshop "Connections Between Algebra and Geometry". Its aim is to
provide an introduction to the theory of higher secant varieties and their
applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in
Mathematics & Statistics), Springer/Birkhause
- …
