3,661 research outputs found

    Chromospheric dynamics

    Get PDF
    This brief review advertises a breakthrough in solar dynamics: the identification of chromospheric Ca II K2V "grains" as manifestations of acoustic shocks. The successful numerical reproduction of the intricate spectral characteristics of K2V grain formation by Carlsson & Stein shows that the non-magnetic solar chromosphere is pervaded by outward traveling shocks to such extent that static modeling is no longer acceptable. Dynamical modeling should soon reconcile the long-standing Ca II/CO dichotomy. The chromospheric dynamics of the magnetized regions remains enigmatic

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis

    From normal brain and behavior to schzophrenia

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Chromosperic oscillations

    Get PDF
    This review concentrates on the quiet-Sun chromosphere. Its internetwork areas are dynamically dominated by the so-called chromospheric three-minute oscillation. They are interpretationally dominated by the so-called Ca II K 2V and H 2V grains. The main points of this review are that the one phenomenon explains the other (both ways), that the quiet-Sun chromosphere is a clapotisphere per- vaded by shocks above h = 1 Mm, and that the existence of the classical temperature minimum is in doubt

    Explanation of the activity sensitivity of Mn I 5394.7 \AA

    Full text link
    There is a long-standing controversy concerning the reason why the Mn I 5394.7 A line in the solar irradiance spectrum brightens more at larger activity than most other photospheric lines. The claim that this activity sensitivity is caused by spectral interlocking to chromospheric emission in Mg II h & k is disputed. Classical one-dimensional modeling is used for demonstration; modern three-dimensional MHD simulation for verification and analysis. The Mn I 5394.7 A line thanks its unusual sensitivity to solar activity to its hyperfine structure. This overrides the thermal and granular Doppler smearing through which the other, narrower, photospheric lines lose such sensitivity. We take the nearby Fe I 5395.2 A line as example of the latter and analyze the formation of both lines in detail to demonstrate and explain granular Doppler brightening. We show that this affects all narrow lines. Neither the chromosphere nor Mg II h & k play a role, nor is it correct to describe the activity sensitivity of Mn I 5394.7 A through plage models with outward increasing temperature contrast. The Mn I 5394.7 A line represents a proxy diagnostic of strong-field magnetic concentrations in the deep solar photosphere comparable to the G band and the blue wing of H-alpha, but not a better one than these. The Mn I lines are more promising as diagnostic of weak fields in high-resolution Stokes polarimetry.Comment: 12 pages, 8 figures, accepted by A&
    corecore