4,616 research outputs found

    How the Justice System Responds to Juvenile Victims: A Comprehensive Model.

    Get PDF
    The justice system handles thousands of cases involving juvenile victims each year. These victims are served by a complex set of agencies and institutions, including police, prosecutors, courts, and child protection agencies. Despite the many cases involving juvenile victims and the structure in place for responding to them, the juvenile victim justice system model presented in this Bulletin is a new concept. Although the juvenile victim justice system has a distinct structure and sequence, its operation is not very well understood. Unlike the more familiar juvenile offender justice system, the juvenile victim justice system has not been conceptualized as a whole or implemented by a common set of statutes. This Bulletin identifies the major elements of the juvenile victim justice system by delineating how cases move through the system. It reviews each step in the case flow process for the child protection and criminal justice systems and describes the interaction of the agencies an individuals involved. Recognizing how the juvenile victim justice system works can inform policy decisions and improve outcomes for juvenile victims. Acknowledging the existence of the system has important implications for system integration, information sharing, and data collection—all of which play a key role in ensuring the safety and well-being of juvenile victims

    Complete tyrosine O-sulfation of gastrin in adult and neonatal cat pancreas

    Get PDF
    AbstractWe have found gastrin in both the adult and neonatal cat pancreas. In contrast with the main production sites, antrum and duodenum, gastrin in the pancreas occurs in a single molecular form, tyrosine O-sulfated gastrin-17. Since tyrosine sulfation increases the pancreozymic effect of gastrin, the complete sulfation seems functionally expedient

    Uniqueness and Non-uniqueness in the Einstein Constraints

    Get PDF
    The conformal thin sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find {\em two} distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte

    Modular termination verification for non-blocking concurrency

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.We present Total-TaDA, a program logic for verifying the total correctness of concurrent programs: that such programs both terminate and produce the correct result. With Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to guarantee termination. This allows us to verify total correctness for nonblocking algorithms, e.g. a counter and a stack. Our specifications can express lock- and wait-freedom. More generally, they can express that one operation cannot impede the progress of another, a new non-blocking property we call non-impedance. Moreover, our approach is modular. We can verify the operations of a module independently, and build up modules on top of each other

    The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part

    Get PDF
    Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist solutions of the time-symmetric two-black-hole initial value problem are derived. The static Hamiltonians related to the expanded solutions, after identifying the bare masses in both solutions, are found to differ from each other at the third post-Newtonian approximation. By shifting the position variables of the black holes the post-Newtonian expansions of the three metrics can be made to coincide up to the fifth post-Newtonian order resulting in identical static Hamiltonians up the third post-Newtonian approximation. The calculations shed light on previously performed binary point-mass calculations at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review

    Structural, mechanical and thermodynamic properties of a coarse-grained DNA model

    Full text link
    We explore in detail the structural, mechanical and thermodynamic properties of a coarse-grained model of DNA similar to that introduced in Thomas E. Ouldridge, Ard A. Louis, Jonathan P.K. Doye, Phys. Rev. Lett. 104 178101 (2010). Effective interactions are used to represent chain connectivity, excluded volume, base stacking and hydrogen bonding, naturally reproducing a range of DNA behaviour. We quantify the relation to experiment of the thermodynamics of single-stranded stacking, duplex hybridization and hairpin formation, as well as structural properties such as the persistence length of single strands and duplexes, and the torsional and stretching stiffness of double helices. We also explore the model's representation of more complex motifs involving dangling ends, bulged bases and internal loops, and the effect of stacking and fraying on the thermodynamics of the duplex formation transition.Comment: 25 pages, 16 figure

    Stretching Semiflexible Polymer Chains: Evidence for the Importance of Excluded Volume Effects from Monte Carlo Simulation

    Full text link
    Semiflexible macromolecules in dilute solution under very good solvent conditions are modeled by self-avoiding walks on the simple cubic lattice (d=3d=3 dimensions) and square lattice (d=2d=2 dimensions), varying chain stiffness by an energy penalty ϵb\epsilon_b for chain bending. In the absence of excluded volume interactions, the persistence length p\ell_p of the polymers would then simply be p=b(2d2)1qb1\ell_p=\ell_b(2d-2)^{-1}q_b^{-1} with qb=exp(ϵb/kBT)q_b= \exp(-\epsilon_b/k_BT), the bond length b\ell_b being the lattice spacing, and kBTk_BT is the thermal energy. Using Monte Carlo simulations applying the pruned-enriched Rosenbluth method (PERM), both qbq_b and the chain length NN are varied over a wide range (0.005qb1,  N50000(0.005 \leq q_b \leq 1, \; N \leq 50000), and also a stretching force ff is applied to one chain end (fixing the other end at the origin). In the absence of this force, in d=2d=2 a single crossover from rod-like behavior (for contour lengths less than p\ell_p) to swollen coils occurs, invalidating the Kratky-Porod model, while in d=3d=3 a double crossover occurs, from rods to Gaussian coils (as implied by the Kratky-Porod model) and then to coils that are swollen due to the excluded volume interaction. If the stretching force is applied, excluded volume interactions matter for the force versus extension relation irrespective of chain stiffness in d=2d=2, while theories based on the Kratky-Porod model are found to work in d=3d=3 for stiff chains in an intermediate regime of chain extensions. While for qb1q_b \ll 1 in this model a persistence length can be estimated from the initial decay of bond-orientational correlations, it is argued that this is not possible for more complex wormlike chains (e.g. bottle-brush polymers). Consequences for the proper interpretation of experiments are briefly discussed.Comment: 23 pages, 17 figures, 2 tables, to be published in J. Chem. Phys. (2011
    corecore