93 research outputs found

    Automated abstraction by incremental refinement in interpolant-based model checking

    Full text link
    Abstract—This paper addresses the field of Unbounded Model Checking (UMC) based on SAT engines, where Craig interpolants have recently gained wide acceptance as an automated abstraction technique. We start from the observation that interpolants can be quite effective on large verification instances. As they operate on SAT-generated refutation proofs, interpolants are very good at automatically abstract facts that are not significant for proofs. In this work, we push forward the new idea of generating abstractions without resorting to SAT proofs, and to accept (reject) abstractions whenever they (do not) fulfill given adequacy constraints. We propose an integrated approach smoothly combining the capabilities of interpolation with abstraction and over-approximation techniques, that do not directly derive from SAT refutation proofs. The driving idea of this combination is to incrementally generate, by refinement, an abstract (over-approximate) image, built up from equivalences, implications, ternary and localization abstraction, then (eventually) from SAT refutation proofs. Experimental results, derived from the verification of hard problems, show the robustness of our approach

    Analysis of polymorphic TGFB1 codons 10, 25, and 263 in a German patient group with non-syndromic cleft lip, alveolus, and palate compared with healthy adults

    Get PDF
    BACKGROUND: Clefts of the lip, alveolus, and palate (CLPs) rank among the most frequent and significant congenital malformations. Leu10Pro and Arg25Pro polymorphisms in the precursor region and Thr263Ile polymorphism in the prodomain of the transforming growth factor β1 (TGF-β1) gene have proved to be crucial to predisposition of several disorders. METHODS: In this study, polymorphism analysis was performed by real-time polymerase chain reaction (LightCycler) and TGF-β1 levels determined by enzyme-linked immunosorbent assay. RESULTS: Only 2/60 Caucasian non-syndromic patients with CLP (3.3%) carried the Arg25Pro and another 2/60 patients (3.3%) the Thr263Ile genotypes, whereas, in a control group of 60 healthy Caucasian blood donors, these heterozygous genotypes were more frequent 16.7% having Arg25Pro (10/60; p < 0.035) and 10,0% having Thr263Ile (6/60), respectively. TGF-β1 levels in platelet-poor plasma of heterozygous Arg25Pro individuals were lower than those of homozygous members (Arg25Arg) in the latter group, but this discrepancy narrowly failed to be significant. Although polymorphisms in codon 10 and 25 were associated with each other, no difference was found between patients and controls concerning the Leu10Pro polymorphism. CONCLUSIONS: The genetic differences in codons 25 and 263 suggest that TGF-β1 could play an important role in occurrence of CLP, however, functional experiments will be required to confirm the mechanisms of disturbed development

    The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis

    Get PDF
    Background: Accurate measures of the severity of pandemic (H1N1) 2009 influenza (pH1N1) are needed to assess the likely impact of an anticipated resurgence in the autumn in the Northern Hemisphere. Severity has been difficult to measure because jurisdictions with large numbers of deaths and other severe outcomes have had too many cases to assess the total number with confidence. Also, detection of severe cases may be more likely, resulting in overestimation of the severity of an average case. We sought to estimate the probabilities that symptomatic infection would lead to hospitalization, ICU admission, and death by combining data from multiple sources. Methods and Findings: We used complementary data from two US cities: Milwaukee attempted to identify cases of medically attended infection whether or not they required hospitalization, while New York City focused on the identification of hospitalizations, intensive care admission or mechanical ventilation (hereafter, ICU), and deaths. New York data were used to estimate numerators for ICU and death, and two sources of data - medically attended cases in Milwaukee or self-reported influenza-like illness (ILI) in New York - were used to estimate ratios of symptomatic cases to hospitalizations. Combining these data with estimates of the fraction detected for each level of severity, we estimated the proportion of symptomatic patients who died (symptomatic case-fatality ratio, sCFR), required ICU (sCIR), and required hospitalization (sCHR), overall and by age category. Evidence, prior information, and associated uncertainty were analyzed in a Bayesian evidence synthesis framework. Using medically attended cases and estimates of the proportion of symptomatic cases medically attended, we estimated an sCFR of 0.048% (95% credible interval [CI] 0.026%-0.096%), sCIR of 0.239% (0.134%-0.458%), and sCHR of 1.44% (0.83%-2.64%). Using self-reported ILI, we obtained estimates approximately 7-96lower. sCFR and sCIR appear to be highest in persons aged 18 y and older, and lowest in children aged 5-17 y. sCHR appears to be lowest in persons aged 5-17; our data were too sparse to allow us to determine the group in which it was the highest. Conclusions: These estimates suggest that an autumn-winter pandemic wave of pH1N1 with comparable severity per case could lead to a number of deaths in the range from considerably below that associated with seasonal influenza to slightly higher, but with the greatest impact in children aged 0-4 and adults 18-64. These estimates of impact depend on assumptions about total incidence of infection and would be larger if incidence of symptomatic infection were higher or shifted toward adults, if viral virulence increased, or if suboptimal treatment resulted from stress on the health care system; numbers would decrease if the total proportion of the population symptomatically infected were lower than assumed.published_or_final_versio

    VOVHDL: A verification-oriented dialect of VHDL

    No full text
    This paper focuses on the communication protocols used for system level modeling and on their VOVHDL implementation. Section 2 summarizes the model for communication we propose. Section 3 lists the restrictions and the extensions imposed on the standard language to yield VOVHDL. Section 4 draws some conclusions. 2. The communication model Protocols play a key role in the communication model and in the overall modelling strategy [CCPB93] and distinguish this approach from the pure use of VHDL or of Process Algebras, as it benefits from the advantages of both. Communications among processes and with the external world are performed through Communication Channel

    Comparative analysis of models and performance indicators for optimal service facility location

    Get PDF
    This study investigates the optimal process for locating generic service facilities by applying and comparing several well-known basic models from the literature. At a strategic level, we emphasize that selecting the right location model to use could result in a problematic and possibly misleading task if not supported by appropriate quantitative analysis. For this reason, we propose a general methodological framework to analyze and compare the solutions provided by several models to obtain a comprehensive evaluation of the location decisions from several different perspectives. Therefore, a battery of key performance indicators (KPIs) has been developed and calculated for the different models’ solutions. Additional insights into the decision process have been obtained through a comparative analysis. The indicators involve topological, coverage, equity, robustness, dispersion, and accessibility aspects. Moreover, a specific part of the analysis is devoted to progressive location interventions over time and identifying core location decisions. Results on randomly generated instances, which simulate areas characterized by realistic geographical or demographic features, are reported to analyze the models’ behavior in different settings and demonstrate the methodology's general applicability. Our experimental campaign shows that the p-median model behaves very well against the proposed KPIs. In contrast, the maximal covering problem and some proposed back-up coverage models return very robust solutions when the location plan is implemented through several progressive interventions over time

    System-Level Modeling and Verification: a Comprehensive Design Methodology

    No full text
    * Working at system level is attracting increasing interest, as it supports the exploration of several alternatives, before the hardware/software partitioning takes place. New issues must be taken into account, such as validation and verification at all steps. This paper presents a system-level design methodology that supports description, validation, and verification at system-level. 1. Introduction The boundaries of hardware description are rapidly migrating towards higher and higher levels of abstraction. Until not long ago, designers mainly worked at register-transfer level, whereas new activities at system-level are now emerging. Systems are conceived before partitioning between hardware and software realization takes place, so that many alternatives can be explored before defining the final hardware/software architecture. Among the most relevant activities at system-level, we list specification description and validation, and system description and verification. Most efforts in..
    • …
    corecore