9,828 research outputs found

    Quantum phase transition induced by Dzyaloshinskii-Moriya in the kagome antiferromagnet

    Full text link
    We argue that the S=1/2 kagome antiferromagnet undergoes a quantum phase transition when the Dzyaloshinskii-Moriya coupling is increased. For D<DcD<D_c the system is in a moment-free phase and for D>DcD>D_c the system develops antiferromagnetic long-range order. The quantum critical point is found to be Dc0.1JD_c \simeq 0.1J using exact diagonalizations and finite-size scaling. This suggests that the kagome compound ZnCu3(OH)_3(OH)_6ClCl_3$ may be in a quantum critical region controlled by this fixed point.Comment: 5 pages, 4 figures; v2: add. data included, show that D=0.1J is at a quantum critical poin

    Quasinormal Modes of Dirty Black Holes

    Full text link
    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.Comment: 4 pages. Published in PR

    Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    Get PDF
    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.Comment: Published in PR

    Unification of bulk and interface electroresistive switching in oxide systems

    Get PDF
    We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.Comment: 4 pages, 3 figures, accepted in PR
    corecore