1,122,262 research outputs found

    Apparatus for recovering matter adhered to a host surface

    Get PDF
    The development of an apparatus for removing and recovering matter adhered to a host surface is described. The device consists of a pickup head with an ultrasonic transducer adapted to deliver ultrasonic pressure waves against the material. The ultrasonic waves agitate the material and cause its separation from the surface. A vacuum system recovers the material and delivers it to suitable storage containers

    How bio-friendly is the universe

    Full text link
    The oft-repeated claim that life is written into the laws of nature are examined and criticized. Arguments are given in favour of life spreading between near-neighbour planets in rocky impact ejecta (transpermia), but against panspermia, leading to the conclusion that if life is indeed found to be widespread in the universe, some form of life principle or biological determinism must be at work in the process of biogenesis. Criteria for what would constitute a credible life principle are elucidated. I argue that the key property of life is its information content, and speculate that the emergence of the requisite information-processing machinery might require quantum information theory for a satisfactory explanation. Some clues about how decoherence might be evaded are discussed. The implications of some of these ideas for fine tuning are discussed.Comment: 11 page conference report, no figure

    Quantum mechanics and the equivalence principle

    Full text link
    A quantum particle moving in a gravitational field may penetrate the classically forbidden region of the gravitational potential. This raises the question of whether the time of flight of a quantum particle in a gravitational field might deviate systematically from that of a classical particle due to tunnelling delay, representing a violation of the weak equivalence principle. I investigate this using a model quantum clock to measure the time of flight of a quantum particle in a uniform gravitational field, and show that a violation of the equivalence principle does not occur when the measurement is made far from the turning point of the classical trajectory. I conclude with some remarks about the strong equivalence principle in quantum mechanics.Comment: 10 pages, 1 figure, research pape

    Quantum fluctuations and life

    Full text link
    There have been many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms, beyond merely providing the basis for the shapes and sizes of biological molecules and their chemical affinities. These range from the suggestion by Schrodinger that quantum fluctuations produce mutations, to the conjecture by Hameroff and Penrose that quantum coherence in microtubules is linked to consciousness. I review some of these claims in this paper, and discuss the serious problem of decoherence. I advance some further conjectures about quantum information processing in bio-systems. Some possible experiments are suggested.Comment: 10 pages, no figures, conference pape

    Physics of the Pseudogap State: Spin-Charge Locking

    Full text link
    The properties of the pseudogap phase above Tc of the high-Tc cuprate superconductors are described by showing that the Anderson-Nambu SU(2) spinors of an RVB spin gap 'lock' to those of the electron charge system because of the resulting improvement of kinetic energy. This enormously extends the range of the vortex liquid state in these materials. As a result it is not clear that the spinons are ever truly deconfined. A heuristic description of the electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter

    Unified Treatment of Quantum Fluctuation Theorem and Jarzynski Equality in Terms of microscopic reversibility

    Full text link
    There are two related theorems which hold even in far from equilibrium, namely fluctuation theorem and Jarzynski equality. Fluctuation theorem states the existence of symmetry of fluctuation of entropy production, while Jarzynski equality enables us to estimate the free energy change between two states by using irreversible processes. On the other hand, relationship between these theorems was investigated by Crooks for the classical stochastic systems. In this letter, we derive quantum analogues of fluctuation theorem and Jarzynski equality microscopic reversibility condition. In other words, the quantum analogue of the work by Crooks is presented.Comment: 7pages, revised versio
    • …
    corecore