30 research outputs found
Mesodermal Progenitor Cells (MPCs) Differentiate into Mesenchymal Stromal Cells (MSCs) by Activation of Wnt5/Calmodulin Signalling Pathway
Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage of MSCs (SSEA-4(neg)CD105+CD90(bright) and MSCA-1+), in the primary cultures, resulted lower than 2%.We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90(bright) early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine intense secretion of Wnt5a and Wnt5b (p<0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4(neg)). We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction (ID₅₀ =  0.5 µM, p<0.01), while endothelial differentiation was unaffected.The present study describes two different putative progenitors (early and late MSCs) that, together with already described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These results suggest that some modifications to the widely accepted MSC nomenclature are required
The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols
Climate change is expected to alter a multitude of factors important to agricultural
systems, including pests, diseases, weeds, extreme climate events, water resources,
soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration
([CO2]), temperature, andwater (CTW) will be the primary drivers of change
in crop growth and agricultural systems. Therefore, establishing the CTW-change
sensitivity of crop yields is an urgent research need and warrants diverse methods
of investigation. Crop models provide a biophysical, process-based tool to investigate crop
responses across varying environmental conditions and farm management techniques,
and have been applied in climate impact assessment by using a variety of
methods (White et al., 2011, and references therein). However, there is a significant
amount of divergence between various crop models’ responses to CTW changes
(R¨otter et al., 2011). While the application of a site-based crop model is relatively
simple, the coordination of such agricultural impact assessments on larger scales
requires consistent and timely contributions from a large number of crop modelers,
each time a new global climate model (GCM) scenario or downscaling technique
is created. A coordinated, global effort to rapidly examine CTW sensitivity across
multiple crops, crop models, and sites is needed to aid model development and
enhance the assessment of climate impacts (Deser et al., 2012)..
Microwave energy application to combustion synthesis: A comprehensive review of recent advancements and most promising perspectives
Microwave heating fundamentally differs from other heating techniques as the consequence of its unique characteristic of being based on the electromagnetic energy transfer from the microwaves source to the interacting material, which according to its electric, dielectric, and magnetic properties can convert the absorbed energy into heat. This peculiar heating mechanism is at the basis of plenty of unquestionable advantages that were reported during the last three decades in most of the different branches of chemistry as well as materials science, thus including also combustion synthesis. After a brief overview of the microwave heating fundamentals as well as of the different components constituting the scientific microwave applicators, all the most significant and recent advancements in the use of microwaves as energy source in both solid-state as well as solution combustion synthesis processes will be comprehensively reviewed, highlighting the unique opportunities arising from the coupling of these two energy efficient techniques. Moreover the possible employment of less conventional frequencies as well as the use of new-generation solid state generators will be critically discussed also in the framework of scaling-up and microwave reactor design considerations
Symmetry in Mathematics and Physics
Si tratta di una conferenza tenutasi presso l'IPAM (Institute for Pure and Applied Mathematics) dell'Universita' della California, Los Angeles 18-20 Gennaio 2008. La conferenza e' stata dedicata alle interazioni tra fisica e matematica sul tema della simmetria, si veda il documento allegato
On the versatility and distinctiveness in the use of microwave energy for the ignition of low exothermic Ni\u2013Ti intermetallics combustion synthesis
Microwave energy has been employed in the present work in order to reach ignition of the combustion synthesis in the binary Ni\u2013Ti system without the need of any separate additional pre-heating step. Indeed, the latter is known to be necessary with more conventional ignition strategies, due to the low exothermic character of the reaction between elemental Ni and Ti powders. On the opposite, the unique microwaves heating mechanism allows directly transferring electromagnetic energy in the reactive specimen that absorbs and transforms it into the heat necessary to reach ignition of the exothermic reaction. According to the electromagnetic field distribution inside the microwave single mode applicator employed, it was possible to realize both Thermal Explosion (TE) and Self-propagating High-temperature Synthesis (SHS) ways of combustion. Moreover, the use of a single mode applicator also allowed separately investigating the effect of electric and magnetic fields strengths, at the 2450 MHz microwave frequency, on the combustion characteristics. This significantly affected the microstructure as well as the phase evolution in the synthesized products