12,553 research outputs found
Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature
Minor hysteresis loops within the main loop are obtained analytically and
exactly in the one-dimensional ferromagnetic random field Ising-model at zero
temperature. Numerical simulations of the model show excellent agreement with
the analytical results
Attractive Potential around a Thermionically Emitting Microparticle
We present a simulation study of the charging of a dust grain immersed in a
plasma, considering the effect of electron emission from the grain (thermionic
effect). It is shown that the OML theory is no longer reliable when electron
emission becomes large: screening can no longer be treated within the
Debye-Huckel approach and an attractive potential well forms, leading to the
possibility of attractive forces on other grains with the same polarity. We
suggest to perform laboratory experiments where emitting dust grains could be
used to create non-conventional dust crystals or macro-molecules.Comment: 3 figures. To appear on Physical Review Letter
Return to return point memory
We describe a new class of systems exhibiting return point memory (RPM) that
are different from those discussed before in the context of ferromagnets. We
show numerically that one dimensional random Ising antiferromagnets have RPM,
when configurations evolve from a large field. However, RPM is violated when
started from some stable configurations at finite field unlike in the
ferromagnetic case. This implies that the standard approach to understanding
ferromagnetic RPM systems will fail for this case. We also demonstrate RPM with
a set of variables that keep track of spin flips at each site. Conventional RPM
for the spin configuration is a projection of this result, suggesting that spin
flip variables might be a more fundamental representation of the dynamics. We
also present a mapping that embeds the antiferromagnetic chain in a two
dimensional ferromagnetic model, and prove RPM for spin exchange dynamics in
the interior of the chain with this mapping
Ion-acoustic solitary waves and shocks in a collisional dusty negative ion plasma
We study the effects of ion-dust collisions and ion kinematic viscosities on
the linear ion-acoustic instability as well as the nonlinear propagation of
small amplitude solitary waves and shocks (SWS) in a negative ion plasma with
immobile charged dusts. {The existence of two linear ion modes, namely the
`fast' and `slow' waves is shown, and their properties are analyzed in the
collisional negative ion plasma.} {Using the standard reductive perturbation
technique, we derive a modified Korteweg-de Vries-Burger (KdVB) equation which
describes the evolution of small amplitude SWS.} {The profiles of the latter
are numerically examined with parameters relevant for laboratory and space
plasmas where charged dusts may be positively or negatively charged.} It is
found that negative ion plasmas containing positively charged dusts support the
propagation of SWS with negative potential. However, the perturbations with
both positive and negative potentials may exist when dusts are negatively
charged. The results may be useful for the excitation of SWS in laboratory
negative ion plasmas as well as for observation in space plasmas where charged
dusts may be positively or negatively charged.Comment: 13 pages, 9 figures; To appear in Physical Review
Development Trends in Wind Energy Conversion System: A Review
Wind energy for electricity production today is a mature, competitive and virtually pollution-free technology widely used in many areas of the world. Wind energy conversion systems have become a focal point in the research of renewable energy sources. This is not only due to the rapid advances in the size of wind generators but also for the improvement of energy electronics and their applicability in wind energy extraction. This paper deals with the recent developments in wind energy conversion systems, their classifications, choice of generators and their social, economic and environmental advantages and disadvantages, a review of the interconnection issues of distributed resources including wind power with electric power systems.
DOI: 10.17762/ijritcc2321-8169.150710
Differentiation of pathogenic amoebae: encystation and excystation ofacanthamoeba culbertsoni - a model
Differentiation into dormant cysts and vegetative trophozoites is an inherent character intimately associated with the life cycle and infectivity of pathogenic amoebae. In the case of human intestinal amoebiasis encystation and excystation are of immediate relevance to the process of transmission of the disease from healthy carriers to susceptible individuals. Using a pathogenic free living amoebaAcanthamoeba culbertsoni as a model, considerable progress has been achieved in understanding the mechanism and control of the process of differentiation. The turnover of the regulatory molecule cyclic 3: '5' adenosine monophosphate is responsible for triggering the process of encystation. Amoebae bind effector molecules such as biogenic amines to a membrane localized receptor which itself resembles the β-adrenergic receptor of mammalian organisms. The activation of adenylate cyclase or inhibition of cyclic AMP phosphodiesterase maintain the dynamic intracellular cyclic AMP. The cytosol fraction of amoebae has a cyclic AMP binding protein. During encystation, enzymes needed for synthesis of cellulose and glycoproteins are induced. Control is exercised at transcriptional level and the process is subject to catabolic repression. Excystation of mature amoebic cysts is mediated by glutamic acid and certain other amino acids by an as yet unelucidated mechanism. During excystation there is dormancy break, induction of deploymerizing enzymesviz. two proteases, a cellulase and a chitinase. The empty cysts or cyst walls are digested by these enzymes and their break down products are used for cellular growth. By invoking a flip-flop mechanism of repression and derepression some plausible explanation can be offered for the cascade of biochemical events that sets in when amoeba is 'turned on' to encystation or excystation
Hysteresis in Random Field XY and Heisenberg Models: Mean Field Theory and Simulations at Zero Temperature
We examine zero temperature hysteresis in random field XY and Heisenberg
models in the zero frequency limit of a cyclic driving field. Exact expressions
for hysteresis loops are obtained in the mean field approximation. These show
rather unusual features. We also perform simulations of the two models on a
simple cubic lattice and compare them with the predictions of the mean field
theory.Comment: replaced by the published versio
Effect of magnetic field on the phase transition in a dusty plasma
The formation of self-consistent crystalline structure is a well-known
phenomenon in complex plasmas. In most experiments the pressure and rf power
are the main controlling parameters in determining the phase of the system. We
have studied the effect of externally applied magnetic field on the
configuration of plasma crystals, suspended in the sheath of a radio-frequency
discharge using the Magnetized Dusty Plasma Experiment (MDPX) device.
Experiments are performed at a fixed pressure and rf power where a crystalline
structure is formed within a confining ring. The magnetic field is then
increased from 0 to 1.28 T. We report on the breakdown of the crystalline
structure with increasing magnetic field. The magnetic field affects the
dynamics of the plasma particles and first leads to a rotation of the crystal.
At higher magnetic field, there is a radial variation (shear) in the angular
velocity of the moving particles which we believe leads to the melting of the
crystal. This melting is confirmed by evaluating the variation of the pair
correlation function as a function of magnetic field.Comment: 9 pages, 5 figure
Heavy-Fermion Instability in Double-Degenerate Plasmas
In this work we study the propagations of normal frequency modes for quantum
hydrodynamic (QHD) waves in the linear limit and introduce a new kind of
instability in a double-degenerate plasma. Three different regimes, namely,
low, intermediate and high magnetic field strengths are considered which span
the applicability of the work to a wide variety of environments. Distinct
behavior is observed for different regimes, for instance, in the
laboratory-scale field regime no frequency-mode instability occurs unlike those
of intermediate and high magnetic-field strength regimes. It is also found that
the instability of this kind is due to the heavy-fermions which appear below a
critical effective-mass parameter () and that the responses
of the two (lower and upper frequency) modes to fractional effective-mass
change in different effective-mass parameter ranges (below and above the
critical value) are quite opposite to each other. It is shown that, the
heavy-fermion instability due to extremely high magnetic field such as that
encountered for a neutron-star crust can lead to confinement of stable
propagations in both lower and upper frequency modes to the magnetic poles.
Current study can have important implications for linear wave dynamics in both
laboratory and astrophysical environments possessing high magnetic fields
- …