607 research outputs found
Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals
CVV Auger electron spectra are calculated for a multi-band Hubbard model
including correlations among the valence electrons as well as correlations
between core and valence electrons. The interest is focused on the
ferromagnetic 3d-transition metals. The Auger line shape is calculated from a
three-particle Green function. A realistic one-particle input is taken from
tight-binding band-structure calculations. Within a diagrammatic approach we
can distinguish between the \textit{direct} correlations among those electrons
participating in the Auger process and the \textit{indirect} correlations in
the rest system. The indirect correlations are treated within second-order
perturbation theory for the self-energy. The direct correlations are treated
using the valence-valence ladder approximation and the first-order perturbation
theory with respect to valence-valence and core-valence interactions. The
theory is evaluated numerically for ferromagnetic Ni. We discuss the
spin-resolved quasi-particle band structure and the Auger spectra and
investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films
The influence of uncorrelated (nonmagnetic) overlayers on the magnetic
properties of thin itinerant-electron films is investigated within the
single-band Hubbard model. The Coulomb correlation between the electrons in the
ferromagnetic layers is treated by using the spectral density approach (SDA).
It is found that the presence of nonmagnetic layers has a strong effect on the
magnetic properties of thin films. The Curie temperatures of very thin films
are modified by the uncorrelated overlayers. The quasiparticle density of
states is used to analyze the results. In addition, the coupling between the
ferromagnetic layers and the nonmagnetic layers is discussed in detail. The
coupling depends on the band occupation of the nonmagnetic layers, while it is
almost independent of the number of the nonmagnetic layers. The induced
polarization in the nonmagnetic layers shows a long-range decreasing
oscillatory behavior and it depends on the coupling between ferromagnetic and
nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see:
http://orion.physik.hu-berlin.d
Mott transitions in correlated electron systems with orbital degrees of freedom
Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard
model are studied by means of a generalization of the linearized dynamical
mean-field theory. The method allows for an efficient and reliable
determination of the critical interaction U_c for any integer filling n and
different M at zero temperature. For half-filling a linear dependence of U_c on
M is found. Inclusion of the (full) Hund's rule exchange J results in a strong
reduction of U_c. The transition turns out to change qualitatively from
continuous for J=0 to discontinuous for any finite J
Electron-correlation effects in appearance-potential spectra of Ni
Spin-resolved and temperature-dependent appearance-potential spectra of
ferromagnetic Nickel are measured and analyzed theoretically. The Lander
self-convolution model which relates the line shape to the unoccupied part of
the local density of states turns out to be insufficient. Electron correlations
and orbitally resolved transition-matrix elements are shown to be essential for
a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press
Kondo screening and exhaustion in the periodic Anderson model
We investigate the paramagnetic periodic Anderson model using the dynamical
mean-field theory in combination with the modified perturbation theory which
interpolates between the weak and strong coupling limits. For the symmetric
PAM, the ground state is always a singlet state. However, as function of the
hybridization strength, a crossover from collective to local Kondo screening is
found. Reducing the number of conduction electrons, the local Kondo singlets
remain stable. The unpaired f-electrons dominate the physics of the system. For
very low conduction electron densities, a large increase of the effective mass
of the quasiparticles is visible, which is interpreted as the approach of the
Mott-Hubbard transition.Comment: 10 pages, 8 figures, accepted by Phys. Rev.
Proper weak-coupling approach to the periodic s-d(f) exchange model
The periodic s-d(f) exchange model is characterized by a wide variety of
interesting applications, a simple mathematical structure and a limited number
of reliable approximations which take care of the quantum nature of the
participating spins. We suggest the use of a projection-operator method for
getting information perturbationally, which are not accessible via diagrammatic
approaches. In this paper we present in particular results beyond perturbation
theory, which are obtained such that almost all exactly known limiting cases
are incorporated correctly. We discuss a variety of possible methods and
evaluate their consequences for one-particle properties. These considerations
serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.
Dynamical mean-field study of ferromagnetism in the periodic Anderson model
The ferromagnetic phase diagram of the periodic Anderson model is calculated
using dynamical mean-field theory in combination with the modified perturbation
theory. Concentrating on the intermediate valence regime, the phase boundaries
are established as function of the total electron density, the position of the
atomic level and the hybridization strength. The main contribution to the
magnetic moment stems from the f-electrons. The conduction band polarization
is, depending on the system parameters either parallel or antiparallel to the
f-magnetization. By investigating the densities of states, one observes that
the change of sign of the conduction band polarization is closely connected to
the hybridization gap, which is only apparent in the case of almost complete
polarization of the f-electrons. Finite-temperature calculations are also
performed, the Curie temperature as function of electron density and f-level
position are determined. In the intermediate-valence regime, the phase
transitions are found to be of second order.Comment: 12 pages, 11 figures, accepted by Phys. Rev.
Strong-coupling approach for strongly correlated electron systems
A perturbation theory scheme in terms of electron hopping, which is based on
the Wick theorem for Hubbard operators, is developed. Diagrammatic series
contain single-site vertices connected by hopping lines and it is shown that
for each vertex the problem splits into the subspaces with ``vacuum states''
determined by the diagonal Hubbard operators and only excitations around these
vacuum states are allowed. The rules to construct diagrams are proposed. In the
limit of infinite spatial dimensions the total auxiliary single-site problem
exactly splits into subspaces that allows to build an analytical
thermodynamically consistent approach for a Hubbard model. Some analytical
results are given for the simple approximations when the two-pole
(alloy-analogy solution) and four-pole (Hartree-Fock approximation) structure
for Green's function is obtained. Two poles describe contribution from the
Fermi-liquid component, which is dominant for small electron and hole
concentrations (``overdoped case'' of high-'s), whereas other two describe
contribution from the non-Fermi liquid and are dominant close to half-filling
(``underdoped case'').Comment: 14 pages, revtex, feynmf, 5 EPS figures, two-column PRB style,
published in PR
Tuning a Josephson junction through a quantum critical point
We tune the barrier of a Josephson junction through a zero-temperature
metal-insulator transition and study the thermodynamic behavior of the junction
in the proximity of the quantum-critical point. We examine a
short-coherence-length superconductor and a barrier (that is described by a
Falicov-Kimball model) using the local approximation and dynamical mean-field
theory. The inhomogeneous system is self-consistently solved by performing a
Fourier transformation in the planar momentum and exactly inverting the
remaining one-dimensional matrix with the renormalized perturbation expansion.
Our results show a delicate interplay between oscillations on the scale of the
Fermi wavelength and pair-field correlations on the scale of the coherence
length, variations in the current-phase relationship, and dramatic changes in
the characteristic voltage as a function of the barrier thickness or
correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe
Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative perturbation theory
We develop an analytical expression for the self-energy of the
infinite-dimensional Hubbard model that is correct in a number of different
limits. The approach represents a generalization of the iterative perturbation
theory to arbitrary fillings. In the weak-coupling regime perturbation theory
to second order in the interaction U is recovered. The theory is exact in the
atomic limit. The high-energy behavior of the self-energy up to order (1/E)**2
and thereby the first four moments of the spectral density are reproduced
correctly. Referring to a standard strong-coupling moment method, we analyze
the limit of strong U. Different modifications of the approach are discussed
and tested by comparing with the results of an exact diagonalization study.Comment: LaTeX, 14 pages, 5 ps figures included, title changed, references
updated, minor change
- …