24,470 research outputs found
Non-Langevin behaviour of the uncompensated magnetisation in nanoparticles of artificial ferritin
The magnetic behaviour of nanoparticles of antiferromagnetic ferritin has
been investigated by 57Fe Mossbauer absorption spectroscopy and magnetisation
measurements, in the temperature range 2.5K-250K and with magnetic fields up to
7T. Samples containing nanoparticles with an average number of Fe atoms ranging
from 400 to 2500 were studied. The value of the anisotropy energy per unit
volume was determined and found to be in the range 3-6 10**5 ergs/cm3, which is
a value typical for ferric oxides. By comparing the results of the two
experimental methods at large field, we show that, contratry to what is
currently assumed, the uncompensated magnetisation of the feritin cores in the
superparamagnetic regime does not follow a Langevin law. For magnetic fields
below the spin-flop field, we propose an approximate law for the field and
temperature variation of the uncompensated magnetisation which has so far never
been applied in antiferromagnetic systems. This approach should more generally
hold for randomly oriented antiferro- magnetic nanoparticles systems with weak
uncompensated moments.Comment: 11 pages, 11 figure
N-body Gravity and the Schroedinger Equation
We consider the problem of the motion of bodies in a self-gravitating
system in two spacetime dimensions. We point out that this system can be mapped
onto the quantum-mechanical problem of an N-body generalization of the problem
of the H molecular ion in one dimension. The canonical gravitational
N-body formalism can be extended to include electromagnetic charges. We derive
a general algorithm for solving this problem, and show how it reduces to known
results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version
that appears in CQ
Satellite refrigeration study. Part II TECHNICAL analysis
Low temperature refrigeration system for satellite mounted infrared sensor coolin
Two-dimensional gravitation and Sine-Gordon-Solitons
Some aspects of two-dimensional gravity coupled to matter fields, especially
to the Sine-Gordon-model are examined. General properties and boundary
conditions of possible soliton-solutions are considered. Analytic
soliton-solutions are discovered and the structure of the induced space-time
geometry is discussed. These solutions have interesting features and may serve
as a starting point for further investigations.Comment: 23 pages, latex, references added, to appear in Phys.Rev.
Scalar and tensorial topological matter coupled to (2+1)-dimensional gravity:A.Classical theory and global charges
We consider the coupling of scalar topological matter to (2+1)-dimensional
gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor
field. We carry out a canonical analysis of the classical theory, investigating
its sectors and solutions. We show that the model admits both BTZ-like
black-hole solutions and homogeneous/inhomogeneous FRW cosmological
solutions.We also investigate the global charges associated with the model and
show that the algebra of charges is the extension of the Kac-Moody algebra for
the field-rigid gauge charges, and the Virasoro algebrafor the diffeomorphism
charges. Finally, we show that the model can be written as a generalized
Chern-Simons theory, opening the perspective for its formulation as a
generalized higher gauge theory.Comment: 40 page
Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity
Exact black hole and cosmological solutions are obtained for a special
two-dimensional dilaton-spectator () theory of gravity. We show how
in this context any desired spacetime behaviour can be determined by an
appropriate choice of a dilaton potential function and a ``coupling
function'' in the action. We illustrate several black hole solutions
as examples. In particular, asymptotically flat double- and multiple- horizon
black hole solutions are obtained. One solution bears an interesting
resemblance to the string-theoretic black hole and contains the same
thermodynamic properties; another resembles the Reissner-Nordstrom
solution. We find two characteristic features of all the black hole solutions.
First the coupling constants in must be set equal to constants of
integration (typically the mass). Second, the spectator field and its
derivative both diverge at any event horizon. A test particle with
``spectator charge" ({\it i.e.} one coupled either to or ),
will therefore encounter an infinite tidal force at the horizon or an
``infinite potential barrier'' located outside the horizon respectively. We
also compute the Hawking temperature and entropy for our solutions. In
cosmology, two non-singular solutions which resemble two exact solutions
in string-motivated cosmology are obtained. In addition, we construct a
singular model which describes the standard non-inflationary big bang
cosmology (). Motivated by the
similaritiesbetween and gravitational field equations in
cosmology, we briefly discuss a special dilaton-spectator action
constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments
concerning the relationship between the constants of integration and the
coupling constants
Tunnelling, Temperature and Taub-NUT Black Holes
We investigate quantum tunnelling methods for calculating black hole
temperature, specifically the null geodesic method of Parikh and Wilczek and
the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of
these methods to a broad class of spacetimes with event horizons, inlcuding
Rindler and non-static spacetimes such as Kerr-Newman and Taub-NUT. We obtain a
general form for the temperature of Taub-NUT-Ads black holes that is
commensurate with other methods. We examine the limitations of these methods
for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a
case in point.Comment: 22 pages, 3 figures; added references, fixed figures, added comments
to extremal section, added footnot
On Inhomogeneity of a String Bit Model for Quantum Gravity
We study quantum gravitational effect on a two-dimensional open universe with
one particle by means of a string bit model. We find that matter is necessarily
homogeneously distributed if the influence of the particle on the size of the
universe is optimized.Comment: 16 pages, LaTeX2
- …