420 research outputs found
COMPASS: a 2.6m telescope for CMBR polarization studies
COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented
Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity
Observations of pulsar timing provide strong constraints on scalar-tensor
theories of gravity, but these constraints are traditionally quoted as limits
on the microscopic parameters (like the Brans-Dicke coupling, for example) that
govern the strength of scalar-matter couplings at the particle level in
particular models. Here we present fits to timing data for several pulsars
directly in terms of the phenomenological couplings (masses, scalar charges,
moment of inertia sensitivities and so on) of the stars involved, rather than
to the more microscopic parameters of a specific model. For instance, for the
double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the
masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25,
while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and
|a_B - a_A| < 0.002$. These constraints are independent of the details of the
scalar tensor model involved, and of assumptions about the stellar equations of
state. Our fits can be used to constrain a broad class of scalar tensor
theories by computing the fit quantities as functions of the microscopic
parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke
models, the constraints obtained in this manner are consistent with those
quoted in the literature.Comment: 19 pages, 7 figure
Mapping the CMB Sky: The BOOMERANG experiment
We describe the BOOMERanG experiment, a stratospheric balloon telescope
intended to measure the Cosmic Microwave Background anisotropy at angular
scales between a few degrees and ten arcminutes. The experiment has been
optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica
at the end of 1998. A test flight was performed on Aug.30, 1997 in Texas. The
level of performance achieved in the test flight was satisfactory and
compatible with the requirements for the long duration flight.Comment: 11 pages, 6 figure
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees
We describe the BOOMERANG North America (BNA) instrument, a balloon-borne
bolometric radiometer designed to map the Cosmic Microwave Background (CMB)
radiation with 0.3 deg resolution over a significant portion of the sky. This
receiver employs new technologies in bolometers, readout electronics,
millimeter-wave optics and filters, cryogenics, scan and attitude
reconstruction. All these subsystems are described in detail in this paper. The
system has been fully calibrated in flight using a variety of techniques which
are described and compared. It has been able to obtain a measurement of the
first peak in the CMB angular power spectrum in a single balloon flight, few
hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB)
experiment.Comment: 40 pages, 22 figures, submitted to Ap
On compatibility of string effective action with an accelerating universe
In this paper, we fully investigate the cosmological effects of the moduli
dependent one-loop corrections to the gravitational couplings of the string
effective action to explain the cosmic acceleration problem in early (and/or
late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant
multiplied by universal non-trivial functions of the common modulus
and the dilaton . The model exhibits several features of cosmological
interest, including the transition between deceleration and acceleration
phases. By considering some phenomenologically motivated ansatzs for one of the
scalars and/or the scale factor (of the universe), we also construct a number
of interesting inflationary potentials. In all examples under consideration, we
find that the model leads only to a standard inflation () when the
numerical coefficient associated with modulus-GB coupling is positive,
while the model can lead also to a non-standard inflation (), if
is negative. In the absence of (or trivial) coupling between the GB term and
the scalars, there is no crossing between the phases, while
this is possible with non-trivial GB couplings, even for constant dilaton phase
of the standard picture. Within our model, after a sufficient amount of e-folds
of expansion, the rolling of both fields and can be small. In
turn, any possible violation of equivalence principle or deviations from the
standard general relativity may be small enough to easily satisfy all
astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix
and refs added; v3 significant revisions, refs added; v4 appendix extended,
new refs, published versio
ℓ-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment
The BOOMERanG experiment has recently produced detailed maps of the Cosmic Microwave Background, where sub-horizon structures are resolved with good signal to noise ratio. A power spectrum (spherical harmonics) analysis of the maps detects three peaks, at multipoles ℓ = (213_(-13)^(+10)),(541_(-32)^(+20))(845_(-25)^(+12)). In this paper we discuss the data analysis and the implications of these results for cosmology
First Estimations of Cosmological Parameters From BOOMERANG
The anisotropy of the cosmic microwave background radiation contains
information about the contents and history of the universe. We report new
limits on cosmological parameters derived from the angular power spectrum
measured in the first Antarctic flight of the BOOMERANG experiment. Within the
framework of inflation-motivated adiabatic cold dark matter models, and using
only weakly restrictive prior probabilites on the age of the universe and the
Hubble expansion parameter , we find that the curvature is consistent with
flat and that the primordial fluctuation spectrum is consistent with scale
invariant, in agreement with the basic inflation paradigm. We find that the
data prefer a baryon density above, though similar to, the
estimates from light element abundances and big bang nucleosynthesis. When
combined with large scale structure observations, the BOOMERANG data provide
clear detections of both dark matter and dark energy contributions to the total
energy density , independent of data from high redshift
supernovae.Comment: As submitted to PRD, revised longer version with an additional figur
Noise Properties of the BOOMERANG Instrument
In this paper we report a short description of the BOOMERANG experiment explaining his scientific goal and the technologies implied. We concentrate then on the analysis of the noise properties discussing in particular the scan synchronous noise. Finally we present the calibration technique and the sensitivity of all the channels
- …