420 research outputs found

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity

    Full text link
    Observations of pulsar timing provide strong constraints on scalar-tensor theories of gravity, but these constraints are traditionally quoted as limits on the microscopic parameters (like the Brans-Dicke coupling, for example) that govern the strength of scalar-matter couplings at the particle level in particular models. Here we present fits to timing data for several pulsars directly in terms of the phenomenological couplings (masses, scalar charges, moment of inertia sensitivities and so on) of the stars involved, rather than to the more microscopic parameters of a specific model. For instance, for the double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25, while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and |a_B - a_A| < 0.002$. These constraints are independent of the details of the scalar tensor model involved, and of assumptions about the stellar equations of state. Our fits can be used to constrain a broad class of scalar tensor theories by computing the fit quantities as functions of the microscopic parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke models, the constraints obtained in this manner are consistent with those quoted in the literature.Comment: 19 pages, 7 figure

    Mapping the CMB Sky: The BOOMERANG experiment

    Get PDF
    We describe the BOOMERanG experiment, a stratospheric balloon telescope intended to measure the Cosmic Microwave Background anisotropy at angular scales between a few degrees and ten arcminutes. The experiment has been optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica at the end of 1998. A test flight was performed on Aug.30, 1997 in Texas. The level of performance achieved in the test flight was satisfactory and compatible with the requirements for the long duration flight.Comment: 11 pages, 6 figure

    New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz

    Full text link
    We present new measurements of the cosmic microwave background (CMB) polarization from the final season of the Cosmic Anisotropy Polarization MAPper (CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz) correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After selection criteria were applied, 956 (939) hours of data survived for analysis of W-band (Q-band) data. Two independent and complementary pipelines produced results in excellent agreement with each other. A broad suite of null tests as well as extensive simulations showed that systematic errors were minimal, and a comparison of the W-band and Q-band sky maps revealed no contamination from galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands in the range 200 < l < 3000, extending the range of previous measurements to higher l. The E-mode spectrum, which is detected at 11 sigma significance, is in agreement with cosmological predictions and with previous work at other frequencies and angular resolutions. The BB power spectrum provides one of the best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap

    The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees

    Get PDF
    We describe the BOOMERANG North America (BNA) instrument, a balloon-borne bolometric radiometer designed to map the Cosmic Microwave Background (CMB) radiation with 0.3 deg resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques which are described and compared. It has been able to obtain a measurement of the first peak in the CMB angular power spectrum in a single balloon flight, few hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB) experiment.Comment: 40 pages, 22 figures, submitted to Ap

    On compatibility of string effective action with an accelerating universe

    Full text link
    In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus σ\sigma and the dilaton ϕ\phi. The model exhibits several features of cosmological interest, including the transition between deceleration and acceleration phases. By considering some phenomenologically motivated ansatzs for one of the scalars and/or the scale factor (of the universe), we also construct a number of interesting inflationary potentials. In all examples under consideration, we find that the model leads only to a standard inflation (w1w \geq -1) when the numerical coefficient δ\delta associated with modulus-GB coupling is positive, while the model can lead also to a non-standard inflation (w<1w<-1), if δ\delta is negative. In the absence of (or trivial) coupling between the GB term and the scalars, there is no crossing between the w1w -1 phases, while this is possible with non-trivial GB couplings, even for constant dilaton phase of the standard picture. Within our model, after a sufficient amount of e-folds of expansion, the rolling of both fields ϕ\phi and σ\sigma can be small. In turn, any possible violation of equivalence principle or deviations from the standard general relativity may be small enough to easily satisfy all astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix and refs added; v3 significant revisions, refs added; v4 appendix extended, new refs, published versio

    ℓ-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment

    Get PDF
    The BOOMERanG experiment has recently produced detailed maps of the Cosmic Microwave Background, where sub-horizon structures are resolved with good signal to noise ratio. A power spectrum (spherical harmonics) analysis of the maps detects three peaks, at multipoles ℓ = (213_(-13)^(+10)),(541_(-32)^(+20))(845_(-25)^(+12)). In this paper we discuss the data analysis and the implications of these results for cosmology

    First Estimations of Cosmological Parameters From BOOMERANG

    Get PDF
    The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic flight of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter hh, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density Ωbh2\Omega_b h^2 above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density Ωtot\Omega_{\rm {tot}}, independent of data from high redshift supernovae.Comment: As submitted to PRD, revised longer version with an additional figur

    Noise Properties of the BOOMERANG Instrument

    Get PDF
    In this paper we report a short description of the BOOMERANG experiment explaining his scientific goal and the technologies implied. We concentrate then on the analysis of the noise properties discussing in particular the scan synchronous noise. Finally we present the calibration technique and the sensitivity of all the channels
    corecore