90 research outputs found

    Noncommutative N=1 super Yang-Mills, the Seiberg-Witten map and UV divergences

    Full text link
    Classically, the dual under the Seiberg-Witten map of noncommutative U(N), {\cal N}=1 super Yang-Mills theory is a field theory with ordinary gauge symmetry whose fields carry, however, a \theta-deformed nonlinear realisation of the {\cal N}=1 supersymmetry algebra in four dimensions. For the latter theory we work out at one-loop and first order in the noncommutative parameter matrix \theta^{\mu\nu} the UV divergent part of its effective action in the background-field gauge, and, for N>=2, we show that for finite values of N the gauge sector fails to be renormalisable; however, in the large N limit the full theory is renormalisable, in keeping with the expectations raised by the quantum behaviour of the theory's noncommutative classical dual. We also obtain --for N>=3, the case with N=2 being trivial-- the UV divergent part of the effective action of the SU(N) noncommutative theory in the enveloping-algebra formalism that is obtained from the previous ordinary U(N) theory by removing the U(1) degrees of freedom. This noncommutative SU(N) theory is also renormalisable.Comment: 33 pages, 4 figures. Version 2: Unnecessary files removed. Version 3: New types of field redefinitions were considered, which make the large N U(N) and the SU(N) theories renormalisable. The conclusions for U(N) with finite N remain unchanged. Version 4: Corrected mistyped equations, minor revision

    Spherically Symmetric Noncommutative Space: d = 4

    Full text link
    In order to find a noncommutative analog of Schwarzschild or Schhwarzschild-de Sitter blackhole we investigate spherically symmetric spaces generated by four noncommutative coordinates in the frame formalism. We present two solutions which however do not posess the prescribed commutative limit. Our analysis indicates that the appropriate noncommutative space might be found as a subspace of a higher-dimensional space.Comment: 14 page

    Metric approach to quantum constraints

    Full text link
    A new framework for deriving equations of motion for constrained quantum systems is introduced, and a procedure for its implementation is outlined. In special cases the framework reduces to a quantum analogue of the Dirac theory of constrains in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in one example our approach coincides with a quantum version of the Dirac formalism, while the other example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.Comment: 13 pages, 1 figur

    Inhibitory effect of coumarin derivatives on apple (cv. Idared) polyphenol oxidase

    Get PDF
    Inhibitory effect of 32 coumarin derivatives (20 Schiff bases, 5 thiosemicarbazides, 5 thiazolidinones, and their precursors, 7-hydroxy-4-methylcoumarin and 4-methylcoumarin-7-yl hydrazine carboxylate) on partially purified apple polyphenol oxidase was investigated. Thirteen coumarin derivatives inhibited polyphenol oxidase (5 Schiff bases, 5 thiosemicarbazides, 1 thiazolidinone, 4-methyl-7-hydroxycoumarin and 4-methylcoumarin-7-yl hydrazine carboxylate), while 19 derivatives showed no effect on enzyme activity. The most effective inhibitors were thiosemicarbazides, with 4-methyl-1-(2-(4-methyl-2-oxo-2H-chromen-7-yloxy)acetyl) thiosemicarbazide (compound C23) being the most prominent inhibitor (IC50 = 10.45 µM). The importance of thiosemicarbazide moiety as crucial structure element for strong apple PPO inhibition was confirmed by its cyclisation to thiazolidinone bearing the same substituents as corresponding thiosemicarbazide. Capture of the sulphur atom of thiosemicarbazide group within tiazolidinone ring caused significant loss of inhibitory effect against apple PPO

    Emergence of classical behavior from the quantum spin

    Full text link
    Classical Hamiltonian system of a point moving on a sphere of fixed radius is shown to emerge from the constrained evolution of quantum spin. The constrained quantum evolution corresponds to an appropriate coarse-graining of the quantum states into equivalence classes, and forces the equivalence classes to evolve as single units representing the classical states. The coarse-grained quantum spin with the constrained evolution in the limit of the large spin becomes indistinguishable from the classical system

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE

    Mean field approximation of two coupled populations of excitable units

    Full text link
    The analysis on stability and bifurcations in the macroscopic dynamics exhibited by the system of two coupled large populations comprised of NN stochastic excitable units each is performed by studying an approximate system, obtained by replacing each population with the corresponding mean-field model. In the exact system, one has the units within an ensemble communicating via the time-delayed linear couplings, whereas the inter-ensemble terms involve the nonlinear time-delayed interaction mediated by the appropriate global variables. The aim is to demonstrate that the bifurcations affecting the stability of the stationary state of the original system, governed by a set of 4N stochastic delay-differential equations for the microscopic dynamics, can accurately be reproduced by a flow containing just four deterministic delay-differential equations which describe the evolution of the mean-field based variables. In particular, the considered issues include determining the parameter domains where the stationary state is stable, the scenarios for the onset and the time-delay induced suppression of the collective mode, as well as the parameter domains admitting bistability between the equilibrium and the oscillatory state. We show how analytically tractable bifurcations occurring in the approximate model can be used to identify the characteristic mechanisms by which the stationary state is destabilized under different system configurations, like those with symmetrical or asymmetrical inter-population couplings.Comment: 5 figure

    On divergent 3-vertices in noncommutative SU(2)gauge theory

    Full text link
    We analyze divergencies in 2-point and 3-point functions for noncommutative θ\theta-expanded SU(2)-gauge theory with massless fermions. We show that, after field redefinition and renormalization of couplings, one divergent term remains.Comment: 7 page

    On UV/IR mixing in noncommutative gauge field theories

    Full text link
    In formulating gauge field theories on noncommutative (NC) spaces it is suggested that particles carrying gauge invariant quantities should not be viewed as pointlike, but rather as extended objects whose sizes grow linearly with their momenta. This and other generic properties deriving from the nonlocal character of interactions (showing thus unambiguously their quantum-gravity origin) lead to a specific form of UV/IR mixing as well as to a pathological behavior at the quantum level when the noncommutativity parameter theta is set to be arbitrarily small. In spite of previous suggestions that in a NC gauge theory based on the theta-expanded Seiberg-Witten (SW) maps UV/IR mixing effects may be under control, a fairly recent study of photon self-energy within a SW theta-exact approach has shown that UV/IR mixing is still present. We study the self-energy contribution for neutral fermions in the theta-exact approach of NC QED, and show by explicit calculation that all but one divergence can be eliminated for a generic choice of the noncommutativity parameter theta. The remaining divergence is linked to the pointlike limit of an extended object.Comment: 10 pages, a figure added, version to appear in JHE

    The absence of the 4ψ\psi divergence in noncommutative chiral models

    Full text link
    In this paper we show that in the noncommutative chiral gauge theories the 4-fermion vertices are finite. The 4ψ4\psi-vertices appear in linear order in quantization of the θ\theta-expanded noncommutative gauge theories; in all previously considered models, based on Dirac fermions, the 4ψ4\psi-vertices were divergent and nonrenormalizable.Comment: 7 page
    corecore