273 research outputs found

    Propulsion system/flight control integration for supersonic aircraft

    Get PDF
    Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors

    Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    Get PDF
    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed

    Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    Get PDF
    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor

    Comparison of Results Obtained from Flight Tests and Simulated Tests of a Digital Electronic Engine Control System in an F-15 Airplane

    Get PDF
    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics

    The Postmodern Indian: Representation and the Films of Sherman Alexie

    Get PDF
    For hundreds of years, Native Americans have been characters in American media. For most of those years, whites determined the way in which Native Americans were represented. First in print, radio, silent movies and later talkies and television, representations of Native Americans have included being uneducated sidekicks, savages, noble savages seeking to steal white women, drunken idiots, or hilarious jesters all for the entertainment of viewers. This troublesome history of negative depictions of Native Americans is the reason this research is directed at the films by Native American writer and filmmaker Sherman Alexie. This research is a qualitative analysis of two of Alexie\u27s films striving to analyze his work as a Native American filmmaker in relation to themes and representations found in films made by non-Natives depicting Native American characters and cultur

    Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    Get PDF
    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots

    Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    Get PDF
    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical

    Measured noise reductions resulting from modified approach procedures for business jet aircraft

    Get PDF
    Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches

    Phosphorus and Potassium Fertilization of Corn and Soybeans Managed with No-till and Chisel-Plow Tillage

    Get PDF
    No-till management results in little or no incorporation of residues and fertilizers with soil. Broadcast fertilization could be inefficient with no-till because phosphorus (P) and potassium (K) accumulate near the soil surface. Banding fertilizers at shallow depths with the planter or deeper before planting could be more effective. A study was initiated in 1994 at this farm and at four other research farms to evaluate P and K fertilizer placement for corn and soybeans managed with no-till and chisel-plow tillage. The study consists of four separate trials: P for corn, P for soybeans, K for corn, and K for soybeans. Both crops are grown on Marshall soil in rotation by alternating crops each year between adjacent areas. The tillage and fertilization treatments are applied for both crops, which are planted with 30-in. row spacing. Cornstalks of plots managed with chisel-plow tillage are chisel plowed in the fall and field cultivated in spring, whereas soybean residues are only field cultivated in spring. The planter is equipped with row cleaners and dry fertilizer attachments
    corecore