320 research outputs found

    Propulsion system/flight control integration for supersonic aircraft

    Get PDF
    Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors

    Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    Get PDF
    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed

    Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    Get PDF
    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor

    Comparison of Results Obtained from Flight Tests and Simulated Tests of a Digital Electronic Engine Control System in an F-15 Airplane

    Get PDF
    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics

    The Postmodern Indian: Representation and the Films of Sherman Alexie

    Get PDF
    For hundreds of years, Native Americans have been characters in American media. For most of those years, whites determined the way in which Native Americans were represented. First in print, radio, silent movies and later talkies and television, representations of Native Americans have included being uneducated sidekicks, savages, noble savages seeking to steal white women, drunken idiots, or hilarious jesters all for the entertainment of viewers. This troublesome history of negative depictions of Native Americans is the reason this research is directed at the films by Native American writer and filmmaker Sherman Alexie. This research is a qualitative analysis of two of Alexie\u27s films striving to analyze his work as a Native American filmmaker in relation to themes and representations found in films made by non-Natives depicting Native American characters and cultur

    Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    Get PDF
    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing

    Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    Get PDF
    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots

    Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    Get PDF
    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical

    Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    Get PDF
    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report

    Semiempirical airframe noise prediction model and evaluation with flight data

    Get PDF
    A semiempirical maximum overall sound pressure level (OASPL) airframe noise model was derived. Noise radiated from aircraft wings was modeled on the trailing edge diffractes quadrupole sound theory. The acoustic dipole sound theory was used to model noise from the landing gear. The model was correlated with maximum OASPL flyover noise measurements obtained for three jet aircraft. One third octave band sound pressure level flyover data was correlated and interpreted
    corecore