10 research outputs found

    A novel, cellulose synthesis inhibitory action of ancymidol impairs plant cell expansion

    Get PDF
    The co-ordination of cell wall synthesis with plant cell expansion is an important topic of contemporary plant biology research. In studies of cell wall synthesis pathways, cellulose synthesis inhibitors are broadly used. It is demonstrated here that ancymidol, known as a plant growth retardant primarily affecting gibberellin biosynthesis, is also capable of inhibiting cellulose synthesis. Its ability to inhibit cellulose synthesis is not related to its anti-gibberellin action and possesses some unique features never previously observed when conventional cellulose synthesis inhibitors were used. It is suggested that ancymidol targets the cell wall synthesis pathway at a regulatory step where cell wall synthesis and cell expansion are coupled. The elucidation of the ancymidol target in plant cells could potentially contribute to our understanding of cell wall synthesis and cell expansion control

    Defining the Functional Domain of Programmed Cell Death 10 through Its Interactions with Phosphatidylinositol-3,4,5-Trisphosphate

    Get PDF
    Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (α1–3 and α4–6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the α5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Δ2KA), three (Δ3KA), and five (Δ5KA) K to A mutations. Δ2KA and Δ3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Δ5KA completely lacks all predicted binding residues. The WT, Δ2KA, and Δ3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Δ5KA abolishes binding to PtdIns(3,4,5)P3. Both Δ5KA and WT show similar secondary and tertiary structures; however, Δ5KA does not bind to OSM. When WT and Δ5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Δ5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations

    No full text
    PURPOSE: The phenotypic manifestations of cerebral cavernous malformation (CCM) disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase (ROCK) mediated hyperpermeability, a potential therapeutic target, has not been established. METHODS: We analyze PDCD10-siRNA treated endothelial cells for stress fibers, ROCK activity and permeability. ROCK activity is assessed in CCM lesions. Brain permeability and CCM lesion burden is quantified, and clinical manifestations are assessed in prospectively enrolled subjects with PDCD10 mutations. RESULTS: We determine that PDCD10 protein suppresses endothelial stress fibers, ROCK activity and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrate robust ROCK activity in murine and human CCM vasculature, and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared to the more common KRIT1 and CCM2 familial and sporadic CCM, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features including scoliosis, cognitive disability and skin lesions, unrelated to lesion burden or bleeding. CONCLUSION: These findings define a unique CCM disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling and the design of trials

    Cerebral cavernous malformations: From molecular pathogenesis to genetic counselling and clinical management

    No full text
    Cerebral cavernous (or capillary-venous) malformations (CCM) have a prevalence of about 0.1-0.5% in the general population. Genes mutated in CCM encode proteins that modulate junction formation between vascular endothelial cells. Mutations lead to the development of abnormal vascular structures.In this article, we review the clinical features, molecular and genetic basis of the disease, and management
    corecore