23,179 research outputs found

    Optical squeezing of a mechanical oscillator by dispersive interaction

    Full text link
    We consider a small partially reflecting vibrating mirror coupled dispersively to a single optical mode of a high finesse cavity. We show this arrangement can be used to implement quantum squeezing of the mechanically oscillating mirror.Comment: 8 pages, 3 figure

    Contribution from unresolved discrete sources to the Extragalactic Gamma-Ray Background (EGRB)

    Full text link
    The origin of the extragalactic gamma-ray background (EGRB) is still an open question, even after nearly forty years of its discovery. The emission could originate from either truly diffuse processes or from unresolved point sources. Although the majority of the 271 point sources detected by EGRET (Energetic Gamma Ray Experiment Telescope) are unidentified, of the identified sources, blazars are the dominant candidates. Therefore, unresolved blazars may be considered the main contributor to the EGRB, and many studies have been carried out to understand their distribution, evolution and contribution to the EGRB. Considering that gamma-ray emission comes mostly from jets of blazars and that the jet emission decreases rapidly with increasing jet to line-of-sight angle, it is not surprising that EGRET was not able to detect many large inclination angle active galactic nuclei (AGNs). Though Fermi could only detect a few large inclination angle AGNs in the first three months' survey, it is expected to detect many such sources in the near future. Since non-blazar AGNs are expected to have higher density as compared to blazars, these could also contribute significantly to the EGRB. In this paper we discuss contributions from unresolved discrete sources including normal galaxies, starburst galaxies, blazars and off-axis AGNs to the EGRB.Comment: 11 pages, 4 figures, accepted for publication in RA

    Strain induced band gap deformation of H/F passivated graphene and h-BN sheet

    Full text link
    Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for hydrogenated systems than for the fluorinated systems. Interestingly, our calculated band gap deformation for hydrogenated/fluorinated graphene and BN sheets are positive, while those for pristine graphene and BN sheet are found to be negative. This is due to the strong overlap between nearest neighbor {\pi} orbitals in the pristine sheets, that is absent in the passivated systems. We also estimate the intrinsic strength of these materials under harmonic uniaxial strain, and find that the in-plane stiffness of fluorinated and hydrogenated graphene are close, but larger in magnitude as compared to those of fluorinated and hydrogenated BN sheet.Comment: Submitted to PR

    Multicanonical Methods vs. Molecular Dynamics vs. Monte Carlo: Comparison for Lennard-Jones Glasses

    Full text link
    We applied a multicanonical algorithm (entropic sampling) to a two-dimensional and a three-dimensional Lennard-Jones system with quasicrystalline and glassy ground states. Focusing on the ability of the algorithm to locate low lying energy states, we compared the results of the multicanonical simulations with standard Monte Carlo simulated annealing and molecular dynamics methods. We find slight benefits to using entropic sampling in small systems (less than 80 particles), which disappear with larger systems. This is disappointing as the multicanonical methods are designed to surmount energy barriers to relaxation. We analyze this failure theoretically, and show (1) the multicanonical method is reduced in the thermodynamic limit (large systems) to an effective Monte Carlo simulated annealing with a random temperature vs. time, and (2) the multicanonical method gets trapped by unphysical entropy barriers in the same metastable states whose energy barriers trap the traditional quenches. The performance of Monte Carlo and molecular dynamics quenches were remarkably similar.Comment: 12 pages, 6 figures, REVTEX, epsf.st

    Collective decision making in cohesive flocks

    Get PDF
    Most of us must have been fascinated by the eye catching displays of collectively moving animals. Schools of fish can move in a rather orderly fashion and then change direction amazingly abruptly. There are a huge number of further examples both from the living and the non-living world for phenomena during which the many interacting, permanently moving units seem to arrive at a common behavioural pattern taking place in a short time. As a paradigm of this type of phenomena we consider the problem of how birds arrive at a decision resulting in their synchronized landing. We introduce a simple model to interpret this process. Collective motion prior to landing is modelled using a simple self-propelled particle (SPP) system with a new kind of boundary condition, while the tendency and the sudden propagation of the intention of landing is introduced through rules analogous to the random field Ising model in an external field. We show that our approach is capable of capturing the most relevant features of collective decision making in a system of units with a variance of individual intentions and being under an increasing level of pressure to switch states. We find that as a function of the few parameters of our model the collective switching from the flying to the landing state is indeed much sharper than the distribution of the individual landing intentions. The transition is accompanied by a number of interesting features discussed in this report
    • …
    corecore