1,320 research outputs found

    An Efficient Method for the Solution of Schwinger--Dyson equations for propagators

    Get PDF
    Efficient computation methods are devised for the perturbative solution of Schwinger--Dyson equations for propagators. We show how a simple computation allows to obtain the dominant contribution in the sum of many parts of previous computations. This allows for an easy study of the asymptotic behavior of the perturbative series. In the cases of the four-dimensional supersymmetric Wess--Zumino model and the ϕ63\phi_6^3 complex scalar field, the singularities of the Borel transform for both positive and negative values of the parameter are obtained and compared.Comment: 9 pages, no figures. Match of the published version, with the corrections in proo

    Alien Calculus and non perturbative effects in Quantum Field Theory

    Full text link
    In many domains of physics, methods are needed to deal with non-perturbative aspects. I want here to argue that a good approach is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean \'Ecalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.Comment: 4 pages, double-colum

    Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies

    Get PDF
    I introduce an approximation scheme that allows to deduce differential equations for the renormalization group β\beta-function from a Schwinger--Dyson equation for the propagator. This approximation is proven to give the dominant asymptotic behavior of the perturbative solution. In the supersymmetric Wess--Zumino model and a ϕ63\phi^3_6 scalar model which do not have divergent vertex functions, this simple Schwinger--Dyson equation for the propagator captures the main quantum corrections.Comment: Clarification of the presentation of results. Equations and results unchanged. Match the published version. 12 page

    On the icosahedron: from two to three dimensions

    Full text link
    In his famous book, Felix Klein describes a complex variable for the quotients of the ordinary sphere by the finite groups of rotations and in particular for the most complex situation of the quotient by the symmetry group of the icosahedron. The purpose of this work and its sequels is to obtain similar results for the quotients of the three--dimensional sphere. Various properties of the group SU(2)SU(2) and of its representations are used to obtain explicit expressions for coordinates and the relations they satisfy.Comment: 8 page

    Higher Order Corrections to the Asymptotic Perturbative Solution of a Schwinger-Dyson Equation

    Full text link
    Building on our previous works on perturbative solutions to a Schwinger-Dyson for the massless Wess-Zumino model, we show how to compute 1/n corrections to its asymptotic behavior. The coefficients are analytically determined through a sum on all the poles of the Mellin transform of the one loop diagram. We present results up to the fourth order in 1/n as well as a comparison with numerical results. Unexpected cancellations of zetas are observed in the solution, so that no even zetas appear and the weight of the coefficients is lower than expected, which suggests the existence of more structure in the theory.Comment: 16 pages, 2 figures. Some points clarified, typos corrected, matches the version to be published in Lett. Math. Phy

    Singularity, complexity, and quasi--integrability of rational mappings

    Get PDF
    We investigate global properties of the mappings entering the description of symmetries of integrable spin and vertex models, by exploiting their nature of birational transformations of projective spaces. We give an algorithmic analysis of the structure of invariants of such mappings. We discuss some characteristic conditions for their (quasi)--integrability, and in particular its links with their singularities (in the 2--plane). Finally, we describe some of their properties {\it qua\/} dynamical systems, making contact with Arnol'd's notion of complexity, and exemplify remarkable behaviours.Comment: Latex file. 17 pages. To appear in CM

    Steady state fluctuation relations for systems driven by an external random force

    Get PDF
    We experimentally study the fluctuations of the work done by an external Gaussian random force on two different stochastic systems coupled to a thermal bath: a colloidal particle in an optical trap and an atomic force microscopy cantilever. We determine the corresponding probability density functions for different random forcing amplitudes ranging from a small fraction to several times the amplitude of the thermal noise. In both systems for sufficiently weak forcing amplitudes the work fluctuations satisfy the usual steady state fluctuation theorem. As the forcing amplitude drives the system far from equilibrium, deviations of the fluctuation theorem increase monotonically. The deviations can be recasted to a single master curve which only depends on the kind of stochastic external force.Comment: 6 pages, submitted to EP
    corecore