546 research outputs found

    Bioactivity of the Andean aromatic plants Aloysia citriodora and Bursera graveolens essential oils against the blowfly Calliphora vomitoria

    Get PDF
    Tropical Andes is a biodiversity hot spot rich in aromatic plant species, whose potential as a source of active compounds for insect pests’ control is still largely underexploited. Here, the Essential Oils (EOs) extracted from two Ecuadorian plants, the shrub Aloysia citriodora (Verbenaceae) and the tree Bursera graveolens (Burseraceae), were chemically analysed and tested for their bioactivity against the blue blowfly Calliphora vomitoria (Linnaeus, 1758) (Diptera: Calliphoridae). This fly is a vector of pathogenic microorganisms, dangerous in factories and stores where fresh meat is processed, stored, and sold. The main components of the A. citriodora EO are geranial and limonene, while in the B. graveolens EO they are limonene and α-terpineol. The effects of the two EOs were evaluated against C. vomitoria by a behavioural assay in a two-choice olfactometer (concentrations range 0.07-2.8 μL L-1 air). Besides, the insecticidal properties of the two EOs were tested by fumigation (EOs concentrations from 6.06 to 36.36 μL L-1 air), by contact with topical applications using a Burkard micro dispenser (EOs dose from 0.10 to 0.60 μl EO/fly), and by ingestion of a mucilage containing EOs (from 15 to 75 μl EO mL-1 mucilage), sucrose, and agarose. Furthermore, the ovicidal activity was assessed (concentrations from 0.006 to 0.075 μL EO cm-2 of filter paper). The results of the behavioural assay showed a stronger repellent effect exerted by the A. citriodora EO, while all the toxicity tests revealed dose-dependent mortality of the blowflies and eggs

    Responses from olfactory sensilla of Sitophilus zeamais to Andean essential oils.

    Get PDF
    Lamiaceae species are well-known in traditional medicine. In the last years, Essential Oils (EOs) of many Lamiaceae have showed to be excellent repellents and/or insecticides. Tropical Andes are extremely rich in endemic flora, possible source of new bioactive substances. Here, we verified the insect repellent activity of the EOs extracted from Clinopodium tomentosum and C. nubigenum, two Lamiaceae typical of the Ecuadorian Andes. The two EOs were tested against the maize weevil Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae), one of the most destructive pests of stored and processed cereals. To characterize the olfactory sensilla of S. zeamais, its antennal structure was investigated by scanning and transmission electron microscopy. The electrophysiological and behavioural responses of the insect to the EOs were then investigated by electroantennography and olfactometer trials. The morphological study revealed the presence of three types of sensilla (Basiconic Sensillum 1, 2, and Grooved Peg Sensillum), that could be involved in the perception of the EOs volatile compounds. Accordingly, the electroantennography showed a positive dose-dependent response of the insect antennae to both the EOs. The behavioural tests displayed a significative repellence of the EOs, starting from 8.4 μL L-1 air, and that the efficacy and readiness of the response to the stimulus was higher for C. tomentosum. In conclusion, both the EOs are detected by the insect by its antennae and exert a strong repellent effect. The results confirm that Andean flora represents a valuable source of unexploited bioactive substances that can be utilized as promising tools for foodstuff pests’ control

    Correlated Component Analysis for diffuse component separation with error estimation on simulated Planck polarization data

    Get PDF
    We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributions to uncertainties on the component maps and on the CMB power spectra. For the Planck polarization case they are found to be subdominant compared to noise.Comment: 17 pages, accepted in MNRA

    Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices.

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration – compared to initial values – in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1–2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized. The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs

    Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem

    Get PDF
    In organic agriculture, soil fertility and productivity rely on biological processes carried out by soil microbes, which represent the key elements of agroecosystem functioning. Arbuscular mycorrhizal fungi (AMF), fundamental microorganisms for soil fertility, plant nutrition and health, may play an important role in organic agriculture by compensating for the reduced use of fertilizers and pesticides. Though, AMF activity and diversity following conversion from conventional to organic farming are poorly investigated. Here we studied AMF abundance, diversity and activity in short- and long-term organically and conventionally managed Mediterranean arable agroecosystems. Our results show that both AMF population activity, as assessed by the mycorrhizal inoculum potential (MIP) assay, the percentage of colonized root length of the field crop (maize) and glomalin-related soil protein (GRSP) content were higher in organically managed fields and increased with time since transition to organic farming. Here, we showed an increase of GRSP content in arable organic systems and a strong correlation with soil MIP values. The analysis of AMF spores showed differences among communities of the three microagroecosystems in terms of species richness and composition as suggested by a multivariate analysis. All our data indicate that AMF respond positively to the transition to organic farming by a progressive enhancement of their activity that seems independent from the species richness of the AMF communities. Our study contributes to the understanding of the effects of agricultural managements on AMF, which represent a promising tool for the implementation of sustainable agriculture

    Microbiological-chemical sourced chondroitin sulfates protect neuroblastoma SH-SY5Y cells against oxidative stress and are suitable for hydrogel-based controlled release

    Get PDF
    Chondroitin sulfates (CS) are a class of sulfated glycosaminoglycans involved in many biological processes. Several studies reported their protective effect against neurodegenerative conditions like Alzheimer’s disease. CS are commonly derived from animal sources, but ethi-cal concerns, the risk of contamination with animal proteins, and the difficulty in controlling the sulfation pattern have prompted research towards non-animal sources. Here we exploited two microbiological-chemical sourced CS (i.e., CS-A,C and CS-A,C,K,L) and Carbopol 974P NF/agarose semi-interpenetrating polymer networks (i.e., P.NaOH.0 and P.Ethanol.0) to set up a release system, and tested the neuroprotective role of released CS against H2 O2-induced oxidative stress. After assessing that our CS (1–100 µM) require a 3 h pre-treatment for neuroprotection with SH-SY5Y cells, we evaluated whether the autoclave type (i.e., N-or B-type) affects hydrogel viscoelastic properties. We selected B-type autoclaves and repeated the study after loading CS (1 or 0.1 mg CS/0.5 mL gel). After loading 1 mg CS/0.5 mL gel, we evaluated CS release up to 7 days by 1,9-dimethylmethylene blue (DMMB) assay and verified the neuroprotective role of CS-A,C (1 µM) in the supernatants. We observed that CS-A,C exhibits a broader neuroprotective effect than CS-A,C,K,L. Moreover, sulfation pattern affects not only neuroprotection, but also drug release

    Ethical issues in the use of in-depth interviews: literature review and discussion

    Get PDF
    This paper reports a literature review on the topic of ethical issues in in-depth interviews. The review returned three types of article: general discussion, issues in particular studies, and studies of interview-based research ethics. Whilst many of the issues discussed in these articles are generic to research ethics, such as confidentiality, they often had particular manifestations in this type of research. For example, privacy was a significant problem as interviews sometimes probe unexpected areas. For similar reasons, it is difficult to give full information of the nature of a particular interview at the outset, hence informed consent is problematic. Where a pair is interviewed (such as carer and cared-for) there are major difficulties in maintaining confidentiality and protecting privacy. The potential for interviews to harm participants emotionally is noted in some papers, although this is often set against potential therapeutic benefit. As well as these generic issues, there are some ethical issues fairly specific to in-depth interviews. The problem of dual role is noted in many papers. It can take many forms: an interviewer might be nurse and researcher, scientist and counsellor, or reporter and evangelist. There are other specific issues such as taking sides in an interview, and protecting vulnerable groups. Little specific study of the ethics of in-depth interviews has taken place. However, that which has shows some important findings. For example, one study shows participants are not averse to discussing painful issues provided they feel the study is worthwhile. Some papers make recommendations for researchers. One such is that they should consider using a model of continuous (or process) consent rather than viewing consent as occurring once, at signature, prior to the interview. However, there is a need for further study of this area, both philosophical and empirical

    Neural networks and separation of Cosmic Microwave Background and astrophysical signals in sky maps

    Get PDF
    The Independent Component Analysis (ICA) algorithm is implemented as a neural network for separating signals of different origin in astrophysical sky maps. Due to its self-organizing capability, it works without prior assumptions on the signals, neither on their frequency scaling, nor on the signal maps themselves; instead, it learns directly from the input data how to separate the physical components, making use of their statistical independence. To test the capabilities of this approach, we apply the ICA algorithm on sky patches, taken from simulations and observations, at the microwave frequencies, that are going to be deeply explored in a few years on the whole sky, by the Microwave Anisotropy Probe (MAP) and by the {\sc Planck} Surveyor Satellite. The maps are at the frequencies of the Low Frequency Instrument (LFI) aboard the {\sc Planck} satellite (30, 44, 70 and 100 GHz), and contain simulated astrophysical radio sources, Cosmic Microwave Background (CMB) radiation, and Galactic diffuse emissions from thermal dust and synchrotron. We show that the ICA algorithm is able to recover each signal, with precision going from 10% for the Galactic components to percent for CMB; radio sources are almost completely recovered down to a flux limit corresponding to 0.7σCMB0.7\sigma_{CMB}, where σCMB\sigma_{CMB} is the rms level of CMB fluctuations. The signal recovering possesses equal quality on all the scales larger then the pixel size. In addition, we show that the frequency scalings of the input signals can be partially inferred from the ICA outputs, at the percent precision for the dominant components, radio sources and CMB.Comment: 15 pages; 6 jpg and 1 ps figures. Final version to be published in MNRA

    Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia

    Get PDF
    The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH
    corecore