5,891 research outputs found

    Loading Bose condensed atoms into the ground state of an optical lattice

    Full text link
    We optimize the turning on of a one-dimensional optical potential, V_L(x,t) = S(t) V_0 cos^2(kx) to obtain the optimal turn-on function S(t) so as to load a Bose-Einstein condensate into the ground state of the optical lattice of depth V_0. Specifically, we minimize interband excitations at the end of the turn-on of the optical potential at the final ramp time t_r, where S(t_r) = 1, given that S(0) = 0. Detailed numerical calculations confirm that a simple unit cell model is an excellent approximation when the turn-on time t_r is long compared with the inverse of the band excitation frequency and short in comparison with nonlinear time \hbar/\mu where \mu is the chemical potential of the condensate. We demonstrate using the Gross-Pitaevskii equation with an optimal turn-on function S(t) that the ground state of the optical lattice can be loaded with very little excitation even for times t_r on the order of the inverse band excitation frequency

    Stable circulation modes in a dual-core matter-wave soliton laser

    Full text link
    We consider a model of a matter-wave laser generating a periodic array of solitary-wave pulses. The system, a general version of which was recently proposed in Ref. [5], is composed of two parallel tunnel-coupled cigar-shaped traps (a reservoir and a lasing cavity), solitons being released through a valve at one edge of the cavity. We report a stable lasing mode accounted for by circulations of a narrow soliton in the cavity, which generates an array of strong pulses (with 1,000 - 10,000 atoms in each, the array's duty cycle ~ 30%) when the soliton periodically hits the valve.Comment: J. of Physics B: At. Mol. Opt. Physics, in pres

    Influence of the Earth on the background and the sensitivity of the GRM and ECLAIRs instruments aboard the Chinese-French mission SVOM

    Full text link
    SVOM (Space-based multi-band astronomical Variable Object Monitor) is a future Chinese-French satellite mission which is dedicated to Gamma-Ray Burst (GRB) studies. Its anti-solar pointing strategy makes the Earth cross the field of view of its payload every orbit. In this paper, we present the variations of the gamma-ray background of the two high energy instruments aboard SVOM, the Gamma-Ray Monitor (GRM) and ECLAIRs, as a function of the Earth position. We conclude with an estimate of the Earth influence on their sensitivity and their GRB detection capability.Comment: 24 pages, 15 figures, accepted for publication in Experimental Astronom

    Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors

    Full text link
    The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor revisions to incorporate editorial feedback from JINS

    Dynamics of nodal points and the nodal count on a family of quantum graphs

    Full text link
    We investigate the properties of the zeros of the eigenfunctions on quantum graphs (metric graphs with a Schr\"odinger-type differential operator). Using tools such as scattering approach and eigenvalue interlacing inequalities we derive several formulas relating the number of the zeros of the n-th eigenfunction to the spectrum of the graph and of some of its subgraphs. In a special case of the so-called dihedral graph we prove an explicit formula that only uses the lengths of the edges, entirely bypassing the information about the graph's eigenvalues. The results are explained from the point of view of the dynamics of zeros of the solutions to the scattering problem.Comment: 34 pages, 12 figure

    Pauli problem for a spin of arbitrary length: A simple method to determine its wave function

    Get PDF
    The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ‘‘Pauli problem,’’ are reviewed for both spin and particle systems
    corecore