307 research outputs found

    Localized Spins on Graphene

    Full text link
    The problem of a magnetic impurity, atomic or molecular, absorbed on top of a carbon atom in otherwise clean graphene is studied using the numerical renormalization group. The spectral, thermodynamic, and scattering properties of the impurity are described in detail. In the presence of a small magnetic field, the low energy electronic features of graphene make possible to inject spin polarized currents through the impurity using a scanning tunneling microscope (STM). Furthermore, the impurity scattering becomes strongly spin dependent and for a finite impurity concentration it leads to spin polarized bulk currents and a large magnetoresistance. In gated graphene the impurity spin is Kondo screened at low temperatures. However, at temperatures larger than the Kondo temperature, the anomalous magnetotransport properties are recovered.Comment: 4+ pages, 4 figures. Added reference

    Impurities and electronic localization in graphene bilayers

    Get PDF
    We analyze the electronic properties of bilayer graphene with Bernal stacking and a low concentration of adatoms. Assuming that the host bilayer lies on top of a substrate, we consider the case where impurities are adsorbed only on the upper layer. We describe non-magnetic impurities as a single orbital hybridized with carbon's pz states. The effect of impurity doping on the local density of states with and without a gated electric field perpendicular to the layers is analyzed. We look for Anderson localization in the different regimes and estimate the localization length. In the biased system, the field induced gap is partially filled by strongly localized impurity states. Interestingly, the structure, distribution and localization length of these states depend on the field polarization.Comment: 7 pages, 6 figure

    Quantum Transport Through a Stretched Spin--1 Molecule

    Full text link
    We analyze the electronic transport through a model spin-1 molecule as a function of temperature, magnetic field and bias voltage. We consider the effect of magnetic anisotropy, which can be generated experimentally by stretching the molecule. In the experimentally relevant regime the conductance of the unstretched molecule reaches the unitary limit of the underscreened spin- 1 Kondo effect at low temperatures. The magnetic anisotropy generates an antiferromagnetic coupling between the remaining spin 1/2 and a singular density of quasiparticles, producing a second Kondo effect and a reduced conductance. The results explain recent measurements in spin-1 molecules [Science 328 1370 (2010)].Comment: 5 pages, 3 figures, minor changes, accepted for publication in EP

    Transport through quantum dots in mesoscopic circuits

    Full text link
    We study the transport through a quantum dot, in the Kondo Coulomb blockade valley, embedded in a mesoscopic device with finite wires. The quantization of states in the circuit that hosts the quantum dot gives rise to finite size effects. These effects make the conductance sensitive to the ratio of the Kondo screening length to the wires length and provide a way of measuring the Kondo cloud. We present results obtained with the numerical renormalization group for a wide range of physically accessible parameters.Comment: 4 pages, 5 figure

    Electronic Transport through Magnetic Molecules with Soft Vibrating Modes

    Full text link
    The low-temperature transport properties of a molecule are studied in the field-effect transitor geometry. The molecule has an internal mechanical mode that modulates its electronic levels and renormalizes both the interactions and the coupling to the electrodes. For a soft mechanical mode the spin fluctuations in the molecule are dominated by the bare couplings while the valence changes are determined by the dressed energies. In this case, the transport properties present an anomalous behavior and the Kondo temperature has a weak gate voltage dependence. These observations are in agreement with recent experimental data.Comment: 4 pages, 3 figures, accepted in PRB R

    Magnetic Moment Formation in Quantum Point Contacts

    Full text link
    We study the formation of local magnetic moments in quantum point contacts. Using a Hubbard-like model to describe point contacts formed in a two dimensional system, we calculate the magnetic moment using the unrestricted Hartree approximation. We analyze different type of potentials to define the point contact, for a simple square potential we calculate a phase diagram in the parameter space (Coulomb repulsion - gate voltage). We also present an analytical calculation of the susceptibility to give explicit conditions for the occurrence of a local moment, we present a simple scaling argument to analyze how the stability of the magnetic moment depends on the point contact dimensions.Comment: 7 pages, 2 figure
    corecore