20,798 research outputs found
Computer modeling of rocket engine ignition transients Final report
Computer modeling of rocket engine ignition transient
Transients influencing rocket engine ignition and popping Interim report
Engine design and operating parameters studied for effects on rocket engine ignition and poppin
The healing mechanism for excited molecules near metallic surfaces
Radiation damage prevents the ability to obtain images from individual
molecules. We suggest that this problem can be avoided for organic molecules by
placing them in close proximity with a metallic surface. The molecules will
then quickly dissipate any electronic excitation via their coupling to the
metal surface. They may therefore be observed for a number of elastic
scattering events that is sufficient to determine their structure.Comment: 4 pages, 4 figures. Added reference
Far-flung Filaments of Ejecta in the Young Supernova Remnant G292.0+1.8
New optical images of the young SNR G292.0+1.8, obtained from the 0.9-m
telescope at CTIO, show a more extensive network of filaments than had been
known previously. Filaments emitting in [O III] are distributed throughout much
of the 8 arcmin diameter shell seen in X-ray and radio images, including a few
at the very outermost shell limits. We have also detected four small complexes
of filaments that show [S II] emission along with [OIII]. In a single long-slit
spectrum we find variations of almost an order of magnitude in the relative
strengths of oxygen and sulfur lines, which must result from abundance
variations. None of the filaments, with or without [S II], shows any evidence
for hydrogen, so all appear to be fragments of pure SN ejecta. The [S II]
filaments provide the first evidence for undiluted products of oxygen burning
in the ejecta from the supernova that gave rise to G292.0+1.8. Some oxygen
burning must have occurred, but the paucity of [S II]-emitting filaments
suggests that either the oxygen burning was not extensive or that most of its
products have yet to be excited. Most of the outer filaments exhibit radial,
pencil-like morphologies that suggest an origin as Rayleigh-Taylor fingers of
ejecta, perhaps formed during the explosion. Simulations of core-collapse
supernovae predict such fingers, but these have never before been so clearly
observed in a young SNR. The total flux from the SNR in [OIII] 5007 is 5.4 *
10**-12 ergs/cm**2/s. Using a distance of 6 kpc and an extinction correction
corresponding to E(B-V) = 0.6 (lower than previous values but more consistent
both with our data and radio and X-ray estimates of NH), this leads to a
luminosity of 1.6 * 10**35 ergs/s in the 5007 Ang. line.Comment: 32 pages including 10 figures, and 3 tables, accepted for publication
in AJ. Vol 132, July 2006. Higher resolution versions of the figures and a
pdf of the manuscript can be found at
http://www-int.stsci.edu/~long/papers/g292_optical
Full characterisation of a focussed extreme ultraviolet beam using a non-redundant array of apertures
This paper presents a novel technique for characterising wavefront curvature and M2, by utilising a non-redundant array (NRA) of apertures to define the plane of investigation through an experimental extreme ultraviolet (EUV) focus. Appropriately sampled, far-field EUV scattering from this NRA is captured on a CCD as the NRA is scanned along the beam axis through the focus. By taking the inverse Fourier transform (IFT), it is possible obtain the spatial autocorrelation functions, via the Wiener-Khinchin theorem, of the exit wave field. By observing the position of the first-order peaks in the autocorrelation as a function of grid translation, both the real and imaginary parts of the complex beam parameter can be determined and the M2 calculated, yielding full characterisation of the embedded Gaussian. Since the periodicity of the grid is known, the planar pixel resolution can be calculated, also allowing the translations movement to be confirmed due to the change in angular acceptance of the fixed CCD. This makes the technique self-calibrating. A high impact, easy to use, cross field technique for full profiling of the embedded Gaussian of probe beams using a non-redundant array of apertures is presented. The technique is experimentally verified in the highly absorbing EUV spectral regime, and is expected to play a significant role in other regimes, where experimental issues prevent the use of existing techniques
Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas
It was demonstrated that low pressure (~0.2 Torr) water vapor plasmas
generated in a 10 mm inner diameter quartz tube with an Evenson microwave
cavity show at least two features which are not explained by conventional
plasma models. First, significant (> 0.25 nm) hydrogen Balmer_ line broadening,
of constant width, up to 5 cm from the microwave coupler was recorded. Only
hydrogen, and not oxygen, showed significant line broadening. This feature,
observed previously in hydrogen-containing mixed gas plasmas generated with
high voltage dc and rf discharges was explained by some researchers to result
from acceleration of hydrogen ions near the cathode. This explanation cannot
apply to the line broadening observed in the (electrodeless) microwave plasmas
generated in this work, particularly at distances as great as 5 cm from the
microwave coupler. Second, inversion of the line intensities of both the Lyman
and Balmer series, again, at distances up to 5 cm from the coupler, were
observed. The line inversion suggests the existence of a hitherto unknown
source of pumping of the optical power in plasmas. Finally, it is notable that
other aspects of the plasma including the OH* rotational temperature and low
electron concentrations are quite typical of plasmas of this type.Comment: 27 pages, 7 figure
Descriptions of WHOI sediment cores, volume 8
This report supplements Volumes 1 - 7 of the core descriptions published previously in this sequence (Johnson and Driscoll,
1975; 1977; Broda, Franks, and Keith, 1981; Broda and Andrew, 1985). It contains visual descriptions and smear slide analyses
for several suites of cores received in the geological samples collection of the Woods Hole Oceanographic Institution between
mid-1984 and late 1989. Approximately 220 sample localities from the North Atlantic, South Atlantic, Mediterranean and Pacific
Oceans are represented. Charts of ships tracks for cruises included in this report and updated computer listings of all cores in the
W.H.O.I. col1ection are also presented.Funding was provided by the National Science Foundation under Contract
Nos. OCE88-00693 and OCE 1901734
If you can't be with the one you love, love the one you're with: How individual habituation of agent interactions improves global utility
Simple distributed strategies that modify the behaviour of selfish individuals in a manner that enhances cooperation or global efficiency have proved difficult to identify. We consider a network of selfish agents who each optimise their individual utilities by coordinating (or anti-coordinating) with their neighbours, to maximise the pay-offs from randomly weighted pair-wise games. In general, agents will opt for the behaviour that is the best compromise (for them) of the many conflicting constraints created by their neighbours, but the attractors of the system as a whole will not maximise total utility. We then consider agents that act as 'creatures of habit' by increasing their preference to coordinate (anti-coordinate) with whichever neighbours they are coordinated (anti-coordinated) with at the present moment. These preferences change slowly while the system is repeatedly perturbed such that it settles to many different local attractors. We find that under these conditions, with each perturbation there is a progressively higher chance of the system settling to a configuration with high total utility. Eventually, only one attractor remains, and that attractor is very likely to maximise (or almost maximise) global utility. This counterintutitve result can be understood using theory from computational neuroscience; we show that this simple form of habituation is equivalent to Hebbian learning, and the improved optimisation of global utility that is observed results from wellknown generalisation capabilities of associative memory acting at the network scale. This causes the system of selfish agents, each acting individually but habitually, to collectively identify configurations that maximise total utility
Recommended from our members
Notations and conventions in molecular spectroscopy: part 1. General spectroscopic notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part I in a series, establishes the notations and conventions used for
general spectroscopic notations and deals with quantum mechanics, quantum numbers
(vibrational states, angular momentum and energy levels), spectroscopic transitions, and
miscellaneous notations (e.g. spectroscopic terms). Further parts will follow, dealing inter
alia with symmetry notation, permutation and permutation-inversion symmetry notation,
vibration-rotation spectroscopy and electronic spectroscopy
Recommended from our members
Notations and conventions in molecular spectroscopy: part 2. Symmetry notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part 2 in a series, establishes the notations and conventions used for the
description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly
with the symmetry operators of the molecular point groups (also drawing attention to the
difference between symmetry operators and elements). The conventions and notations of the
molecular point groups are then established, followed by those of the representations of these
groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with
permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy
and electronic spectroscopy
- …