4,051 research outputs found
Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb and Fe
Interfaces between a bulk-insulating topological insulator (TI) and metallic
adatoms have been studied using high-resolution, angle-resolved and core-level
photoemission. Fe, Nb and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS)
surfaces both at room temperature and 38K. The coverage- and
temperature-dependence of the adsorption and interfacial formation process have
been investigated, highlighting the effects of the overlayer growth on the
occupied electronic structure of the TI. For all coverages at room temperature
and for those equivalent to less than 0.1 monolayer at low temperature all
three metals lead to a downward shift of the TI's bands with respect to the
Fermi level. At room temperature Ag appears to intercalate efficiently into the
van der Waals gap of BSTS, accompanied by low-level substitution of the Te/Se
atoms of the termination layer of the crystal. This Te/Se substitution with
silver increases significantly for low temperature adsorption, and can even
dominate the electrostatic environment of the Bi/Sb atoms in the BSTS
near-surface region. On the other hand, Fe and Nb evaporants remain close to
the termination layer of the crystal. On room temperature deposition, they
initially substitute isoelectronically for Bi as a function of coverage, before
substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too
immobile for substitution processes and show a behaviour consistent with
clustering on the surface. For both Ag and Fe/Nb, these differing adsorption
pathways leads to the qualitatively similar and remarkable behavior for low
temperature deposition that the chemical potential first moves upward (n-type
dopant behavior) and then downward (p-type behavior) on increasing coverage.Comment: 10 pages, 4 figures. In our Phys. Rev. B manuscript an error was made
in formulating the last sentence of the abstract that, unfortunately, was
missed in the page proofs. Version 2 on arxiv has the correct formulation of
this sentenc
The Alteration History of Clovis Class Rocks in Gusev Crater as Determined by Ti-Normalzed Mass Balance Analysis
The West Spur Clovis class rocks in Gusev Crater are some of the most altered rocks in Gusev Crater and likely contain a mixed sulfate and phyllosilicate mineralogy [1,2]. The high S and Cl content of the Clovis rocks suggests that acidic vapors or fluids of H2SO4 and HCl reacted with the Clovis parent rock to form Ca, Mg,- sulfates, iron-oxyhydroxides and secondary aluminosilicates (approx.60 wt.%) of a poorly crystalline nature (e.g., allophane) [1]. Up to 14-17 wt.% phyllosilicates (e.g., kaolinite, chlorite, serpentine) are hypothesized to exist in the Clovis materials suggesting that Clovis parent materials while possibly exposed to acidic pHs were likely neutralized by basalt dissolution which resulted in mildly acidic pHs (4-6) [1, 2]. This work proposes that subsequent to the alteration of the Clovis rocks, alteration fluids became concentrated in ions resulting in the addition of silicate and salts. The objective of this work is to utilize Ti-normalized mass balance analysis to evaluate (1) mineral gains and losses and (2) elemental gains and losses in the Clovis rocks. Results of this work will be used evaluate the nature of geochemical conditions that affect phyllosilicate and sulfate formation at Gusev crater
The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars
The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3.9. Fe hydrolysis reactions on Mars is another source of protons that would have contributed to acidity. The presence of SO2 from volcanic processes could also have contributed to geochemical acidification. These sources of acidity competed with base-forming cations that resulted in mildly acidic solutions that were not favorable for carbonate formation but may have allowed for Fe/Mg smectite formation. Noachian to early Hesperian Mars could have been mildly acidic, allowing Fe/Mg smectite formation but preventing widespread carbonate deposition. This paradigm shift from an early Mars that was neutral-alkaline to mildly acidic may possibly explain why there is a disparity between the occurrence of carbonate and Fe/Mg smectites. Potential microbiological activity would not be eliminated under a mildly acidic Mars; however, there could be tighter constraints as to the type and species of microbiology that could exist
Localization in Artificial Disorder - Two Coupled Quantum Dots
Using Single Electron Capacitance Spectroscopy, we study electron additions
in quantum dots containing two potential minima separated by a shallow barrier.
Analysis of addition spectra in magnetic field allows us to distinguish whether
electrons are localized in either potential minimum or delocalized over the
entire dot. We demonstrate that high magnetic field abruptly splits up a
low-density droplet into two smaller fragments, each residing in a potential
minimum. An unexplained cancellation of electron repulsion between electrons in
these fragments gives rise to paired electron additions.Comment: submitted to Phys.Rev.Let
Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8
This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109
QED in strong, finite-flux magnetic fields
Lower bounds are placed on the fermionic determinants of Euclidean quantum
electrodynamics in two and four dimensions in the presence of a smooth,
finite-flux, static, unidirectional magnetic field , where
or , and is a point in the xy-plane.Comment: 10 pages, postscript (in uuencoded compressed tar file
Chemical kinetics and photochemical data for use in stratospheric modeling
As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory
Technicolor Theories with Negative S
We show that the pseudo Nambu--Goldstone boson contribution to the
Peskin--Takeuchi electroweak parameter can be negative in a class of
technicolor theories. This negative contribution can be large enough to cancel
the positive techni-hadron contribution, showing that electroweak precision
tests alone cannot be used to rule out technicolor as the mechanism of
electroweak symmetry breaking.Comment: (LBL-32893, UCB-PTH 92/34, 10 pages; we added a discussion of
uncertainties, fine-tuning, and SU(2) asymptotic freedom; the conclusions are
unchanged.
- …