3,056 research outputs found

    Propagation of Muons and Taus at High Energies

    Get PDF
    The photonuclear contribution to charged lepton energy loss has been re-evaluated taking into account HERA results on real and virtual photon interactions with nucleons. With large Q2Q^2 processes incorporated, the average muon range in rock for muon energies of 10910^9 GeV is reduced by only 5% as compared with the standard treatment. We have calculated the tau energy loss for energies up to 10910^9 GeV taking into consideration the decay of the tau. A Monte Carlo evaluation of tau survival probability and range show that at energies below 107−10810^7-10^8 GeV, depending on the material, only tau decays are important. At higher energies the tau energy losses are significant, reducing the survival probability of the tau. We show that the average range for tau is shorter than its decay length and reduce to 17 km in water for an incident tau energy of 10910^9 GeV, as compared with its decay length of 49 km at that energy. In iron, the average tau range is 4.7 km for the same incident energy.Comment: 25 pages including 8 figure

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Jet production in charged current deep inelastic eâșp scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic eâșp scattering for QÂČ > 200 GeVÂČ with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻Âč. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}âŒȘ, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}âŒȘ at y_{cut} = 10⁻ÂČ for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of QÂČ is found to be consistent with that measured in NC DIS
    • 

    corecore