3 research outputs found

    LiFePO4 spray drying scale-up and carbon-cage for improved cyclability

    Get PDF
    The growing market for electrical vehicles requires inexpensive, long-lasting batteries. LiFePO4 (LFP) melt-synthesized from ore concentrate fits this role, but the manufacturing process requires additional steps that includes grinding large ingots into a nanoparticle suspension followed by a dessication step. Spray drying, rather than tray drying, creates a mesopomus powder that enhances wettability. Adding lactose and high-Mw polyvinyl alcohol (PVA) to the suspension of nanostructures followed by pyrolysis, creates a carbon-cage that interconnects the cathode nanoparticles, imparting better capacity (LiFePO4/C: 161 mA h g(-1) at 0.1C), discharge rate (flat plateau, 145 mA h g(-1) at 5C), and cyclability (91% capacity retention after 750 cycles at 1C). Particle size affects battery stability; PVA increases the suspension's viscosity and alters the powder morphology, from spherical to hollow particles. A model describes the non-Newtonian suspension's rheology changing: shear, temperature, LFP and PVA loading. Carbon precursors prevent the nanoparticles from sintering during calcination but lactose gasifies 50% of the carbon, according to the chemical and allotropic composition measurements (CS analyzer, XPS, and Raman). The carbon-cage imparts micmporosity and we correlate the SEM and TEM powder's morphology with N2 physisorption porosimetry. Ultrasonication of the suspension fragments the PVA chain, which is detrimental to the final cathode performance

    Dealloyed nanoporous materials for rechargeable lithium batteries

    No full text
    corecore