616 research outputs found

    Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice.

    Get PDF
    The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders

    Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice.

    Get PDF
    It is becoming increasingly apparent that the causes of autism spectrum disorders (ASD) are due to both genetic and environmental factors. Animal studies provide important translational models for elucidating specific genetic or environmental factors that contribute to ASD-related behavioral deficits. For example, mouse research has demonstrated a link between maternal immune activation and the expression of ASD-like behaviors. Although these studies have provided insights into the potential causes of ASD, they are limited in their ability to model the important interactions between genetic variability and environmental insults. This is of particular concern given the broad spectrum of severity observed in the human population, suggesting that subpopulations may be more susceptible to the adverse effects of particular environmental insults. It is hypothesized that the severity of effects of maternal immune activation on ASD-like phenotypes is influenced by the genetic background in mice. To test this, pregnant dams of two inbred strains (that is, C57BL/6J and BTBR T(+)tf/J) were exposed to the viral mimic polyinosinic-polycytidylic acid (polyI:C), and their offspring were tested for the presence and severity of ASD-like behaviors. To identify differences in immune system regulation, spleens were processed and measured for alterations in induced cytokine responses. Strain-treatment interactions were observed in social approach, ultrasonic vocalization, repetitive grooming and marble burying behaviors. Interestingly, persistent dysregulation of adaptive immune system function was only observed in BTBR mice. Data suggest that behavioral and immunological effects of maternal immune activation are strain-dependent in mice

    Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression.

    Get PDF
    The contribution of peripheral immunity to autism spectrum disorders (ASDs) risk is debated and poorly understood. Some mothers of children with ASD have autoantibodies that react to fetal brain proteins, raising the possibility that a subset of ASD cases may be associated with a maternal antibody response during gestation. The mechanism by which the maternal immune system breaks tolerance has not been addressed. We hypothesized that the mechanism may involve decreased expression of the MET receptor tyrosine kinase, an ASD risk gene that also serves as a key negative regulator of immune responsiveness. In a sample of 365 mothers, including 202 mothers of children with ASD, the functional MET promoter variant rs1858830 C allele was strongly associated with the presence of an ASD-specific 37+73-kDa band pattern of maternal autoantibodies to fetal brain proteins (P=0.003). To determine the mechanism of this genetic association, we measured MET protein and cytokine production in freshly prepared peripheral blood mononuclear cells from 76 mothers of ASD and typically developing children. The MET rs1858830 C allele was significantly associated with MET protein expression (P=0.025). Moreover, decreased expression of the regulatory cytokine IL-10 was associated with both the MET gene C allele (P=0.001) and reduced MET protein levels (P=0.002). These results indicate genetic distinction among mothers who produce ASD-associated antibodies to fetal brain proteins, and suggest a potential mechanism for how a genetically determined decrease in MET protein production may lead to a reduction in immune regulation

    Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    Get PDF
    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes

    In Search of Cellular Immunophenotypes in the Blood of Children with Autism

    Get PDF
    Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism.We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4-6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ β‰₯ 68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry.There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls.These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed

    Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.

    Get PDF
    Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score&lt;70) (ASD+ID, N=184) and those without (composite scoreβ©Ύ70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-Ξ³, interleukin-1Ξ± (IL-1Ξ±) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD

    Additional outcomes and subgroup analyses of NXY-059 for acute ischemic stroke in the SAINT I trial

    Get PDF
    &lt;p&gt;&lt;b&gt;Background and Purpose:&lt;/b&gt; NXY-059 is a free radical-trapping neuroprotectant demonstrated to reduce disability from ischemic stroke. We conducted analyses on additional end points and sensitivity analyses to confirm our findings.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; We randomized 1722 patients with acute ischemic stroke to a 72-hour infusion of placebo or intravenous NXY-059 within 6 hours of stroke onset. The primary outcome was disability at 90 days, as measured by the modified Rankin Scale (mRS), a 6-point scale ranging from 0 (no residual symptoms) to 5 (bed-bound, requiring constant care). Additional and exploratory analyses included mRS at 7 and 30 days; subgroup interactions with final mRS; assessments of activities of daily living by Barthel index; and National Institutes of Health Stroke Scale (NIHSS) neurological scores at 7 and 90 days.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; NXY-059 significantly improved the distribution of the mRS disability score compared with placebo at 7, 30, and 90 days (Cochran-Mantel-Haenszel test P=0.002, 0.004, 0.038, respectively; 90-day common odds ratio 1.20; 95% CI, 1.01 to 1.42). The benefit was not attributable to any specific baseline characteristic, stratification variable or subgroup interaction. Neurological scores were improved at 7 days (odds ratio [OR], 1.46; 95% CI, 1.13, 1.89; P=0.003) and the Barthel index was improved at 7 and 30 days (OR, 1.55; 95% CI, 1.22, 1.98; P&#60;0.0001; OR, 1.27; 95% CI, 1.01, 1.59; P=0.02).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; NXY-059 within 6 hours of acute ischemic stroke significantly reduced disability. Benefit on neurological scores and activities of daily living was detectable early but not significant at 90 days; however, our trial was underpowered to measure effects on the neurological examination. The benefit on disability is not confounded by interactions and is supported by other outcome measures.&lt;/p&gt

    NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II trials

    Get PDF
    &lt;p&gt;&lt;b&gt;Background and Purpose:&lt;/b&gt; In animal models of acute ischemic stroke (AIS), the free radical-trapping agent NXY-059 showed promise as a neuroprotectant. SAINT I and II were randomized, placebo-controlled, double-blind trials to investigate the efficacy of NXY-059 in patients with AIS.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; Patients with AIS received an infusion of intravenous NXY-059 or placebo within 6 hours from the onset of stroke symptoms. A pooled individual patient analysis was prespecified to assess the overall efficacy and to examine subgroups. The primary end point was the distribution of disability scores measured on the modified Rankin scale (mRS) at 90 days. Neurologic and activities of daily living scores were investigated as secondary end points. We also evaluated whether treatment with NXY-059 would reduce alteplase-related intracranial hemorrhages. Finally, we evaluated possible predictors of good or poor outcome.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; An intent-to-treat efficacy analysis was based on 5028 patients. Baseline parameters and prognostic factors were well balanced between treatment groups. The distribution of scores on the mRS was not different in the group treated with NXY-059 (n = 2438) compared with the placebo group (n = 2456): odds ratio for limiting disability = 1.02; 95% CI, 0.92 to 1.13 (P = 0.682, Cochran-Mantel-Haenszel test). Comparisons at each level of the mRS confirmed an absence of benefit. There was no evidence of efficacy in prespecified subgroups or from the secondary outcome analyses. Mortality was equal in the 2 groups (16.7% vs 16.5%), and adverse event rates were similar. Among patients treated with alteplase, there was no decrease in rates of symptomatic or asymptomatic hemorrhage associated with NXY-059 treatment versus placebo. Subgroup analyses identified National Institutes of Health Stroke Scale score, age, markers of inflammation, blood glucose, and right-sided infarct as predictors of poor outcome.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; NXY-059 is ineffective for treatment of AIS within 6 hours of symptom onset. This is also true for subgroups and the prevention of alteplase-associated hemorrhage.&lt;/p&gt

    Vaginal progesterone pessaries for pregnant women with a previous preterm birth to prevent neonatal respiratory distress syndrome (the PROGRESS Study): A multicentre, randomised, placebo-controlled trial

    Get PDF
    Published: September 26, 2017Background: Neonatal respiratory distress syndrome, as a consequence of preterm birth, is a major cause of early mortality and morbidity. The withdrawal of progesterone, either actual or functional, is thought to be an antecedent to the onset of labour. There remains limited information on clinically relevant health outcomes as to whether vaginal progesterone may be of benefit for pregnant women with a history of a previous preterm birth, who are at high risk of a recurrence. Our primary aim was to assess whether the use of vaginal progesterone pessaries in women with a history of previous spontaneous preterm birth reduced the risk and severity of respiratory distress syndrome in their infants, with secondary aims of examining the effects on other neonatal morbidities and maternal health and assessing the adverse effects of treatment. Methods: Women with a live singleton or twin pregnancy between 18 to <24 weeks' gestation and a history of prior preterm birth at less than 37 weeks' gestation in the preceding pregnancy, where labour occurred spontaneously or in association with cervical incompetence or following preterm prelabour rupture of the membranes, were eligible. Women were recruited from 39 Australian, New Zealand, and Canadian maternity hospitals and assigned by randomisation to vaginal progesterone pessaries (equivalent to 100 mg vaginal progesterone) (n = 398) or placebo (n = 389). Participants and investigators were masked to the treatment allocation. The primary outcome was respiratory distress syndrome and severity. Secondary outcomes were other respiratory morbidities; other adverse neonatal outcomes; adverse outcomes for the woman, especially related to preterm birth; and side effects of progesterone treatment. Data were analysed for all the 787 women (100%) randomised and their 799 infants. Findings: Most women used their allocated study treatment (740 women, 94.0%), with median use similar for both study groups (51.0 days, interquartile range [IQR] 28.0-69.0, in the progesterone group versus 52.0 days, IQR 27.0-76.0, in the placebo group). The incidence of respiratory distress syndrome was similar in both study groups-10.5% (42/402) in the progesterone group and 10.6% (41/388) in the placebo group (adjusted relative risk [RR] 0.98, 95% confidence interval [CI] 0.64-1.49, p = 0.912)-as was the severity of any neonatal respiratory disease (adjusted treatment effect 1.02, 95% CI 0.69-1.53, p = 0.905). No differences were seen between study groups for other respiratory morbidities and adverse infant outcomes, including serious infant composite outcome (155/406 [38.2%] in the progesterone group and 152/393 [38.7%] in the placebo group, adjusted RR 0.98, 95% CI 0.82-1.17, p = 0.798). The proportion of infants born before 37 weeks' gestation was similar in both study groups (148/406 [36.5%] in the progesterone group and 146/393 [37.2%] in the placebo group, adjusted RR 0.97, 95% CI 0.81-1.17, p = 0.765). A similar proportion of women in both study groups had maternal morbidities, especially those related to preterm birth, or experienced side effects of treatment. In 9.9% (39/394) of the women in the progesterone group and 7.3% (28/382) of the women in the placebo group, treatment was stopped because of side effects (adjusted RR 1.35, 95% CI 0.85-2.15, p = 0.204). The main limitation of the study was that almost 9% of the women did not start the medication or forgot to use it 3 or more times a week. Conclusions: Our results do not support the use of vaginal progesterone pessaries in women with a history of a previous spontaneous preterm birth to reduce the risk of neonatal respiratory distress syndrome or other neonatal and maternal morbidities related to preterm birth. Individual participant data meta-analysis of the relevant trials may identify specific women for whom vaginal progesterone might be of benefit. Current Clinical Trials ISRCTN20269066.Caroline A. Crowther, Pat Ashwood, Andrew J. McPhee, Vicki Flenady, Thach Tran, Jodie M. Dodd, Jeffrey S. Robinson, for the PROGRESS Study Grou
    • …
    corecore