814 research outputs found

    Log-Networks

    Full text link
    We introduce a growing network model in which a new node attaches to a randomly-selected node, as well as to all ancestors of the target node. This mechanism produces a sparse, ultra-small network where the average node degree grows logarithmically with network size while the network diameter equals 2. We determine basic geometrical network properties, such as the size dependence of the number of links and the in- and out-degree distributions. We also compare our predictions with real networks where the node degree also grows slowly with time -- the Internet and the citation network of all Physical Review papers.Comment: 7 pages, 6 figures, 2-column revtex4 format. Version 2: minor changes in response to referee comments and to another proofreading; final version for PR

    Extended Emission Line Gas in Radio Galaxies - PKS0349-27

    Get PDF
    PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a spectacular, spiral-like structure in its extended emission line gas (EELG). We have measured the velocity field in this gas and find that it splits into 2 cloud groups separated by radial velocities which at some points approach 400 km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta, [SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence for the type of HII region emission associated with starburst activity in either velocity system. The measured emission line ratios are similar to those found in the nuclei of narrow-line radio galaxies, but the extended ionization/excitation cannot be produced by continuum emission from the active nucleus alone. We present arguments which suggest that the velocity disturbances seen in the EELG are most likely the result of a galaxy-galaxy collision or merger but cannot completely rule out the possibility that the gas has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.

    The Kinematics of Thick Disks in External Galaxies

    Full text link
    We present kinematic measurements of the thick and thin disks in two edge-on galaxies. We have derived stellar rotation curves at and above the galaxies' midplanes using Ca II triplet features measured with the GMOS spectrograph on Gemini North. In one galaxy, FGC 1415, the kinematics above the plane show clear rotation that lags that of the midplane by ~20-50%, similar to the behavior seen in the Milky Way. However, the kinematics of the second galaxy, FGC 227, are quite different. The rotation above the plane is extremely slow, showing <25% of the rotation speed of the stars at the midplane. We decompose the observed rotation curves into a superposition of thick and thin disk kinematics, using 2-dimensional fits to the galaxy images to determine the fraction of thick disk stars at each position. We find that the thick disk of FGC 1415 rotates at 30-40% of the rotation speed of the thin disk. In contrast, the thick disk of FGC 227 is very likely counter-rotating, if it is rotating at all. These observations are consistent with the velocity dispersion profiles we measure for each galaxy. The detection of counter-rotating thick disks conclusively rules out models where the thick disk forms either during monolithic collapse or from vertical heating of a previous thin disk. Instead, the data strongly support models where the thick disk forms from direct accretion of stars from infalling satellites.Comment: 13 pages, 10 figures. Accepted for publication in Ap

    Towards the characterization of individual users through Web analytics

    Full text link
    We perform an analysis of the way individual users navigate in the Web. We focus primarily in the temporal patterns of they return to a given page. The return probability as a function of time as well as the distribution of time intervals between consecutive visits are measured and found to be independent of the level of activity of single users. The results indicate a rich variety of individual behaviors and seem to preclude the possibility of defining a characteristic frequency for each user in his/her visits to a single site.Comment: 8 pages, 4 figures. To appear in Proceeding of Complex'0

    Edge effects in a frustrated Josephson junction array with modulated couplings

    Full text link
    A square array of Josephson junctions with modulated strength in a magnetic field with half a flux quantum per plaquette is studied by analytic arguments and dynamical simulations. The modulation is such that alternate columns of junctions are of different strength to the rest. Previous work has shown that this system undergoes an XY followed by an Ising-like vortex lattice disordering transition at a lower temperature. We argue that resistance measurements are a possible probe of the vortex lattice disordering transition as the linear resistance RL(T)∌A(T)/LR_{L}(T)\sim A(T)/L with A(T)∝(T−TcI) A(T) \propto (T-T_{cI}) at intermediate temperatures TcXY>T>TcIT_{cXY}>T>T_{cI} due to dissipation at the array edges for a particular geometry and vanishes for other geometries. Extensive dynamical simulations are performed which support the qualitative physical arguments.Comment: 8 pages with figs, RevTeX, to appear in Phys. Rev.

    A quantitative analysis of measures of quality in science

    Get PDF
    Condensing the work of any academic scientist into a one-dimensional measure of scientific quality is a difficult problem. Here, we employ Bayesian statistics to analyze several different measures of quality. Specifically, we determine each measure's ability to discriminate between scientific authors. Using scaling arguments, we demonstrate that the best of these measures require approximately 50 papers to draw conclusions regarding long term scientific performance with usefully small statistical uncertainties. Further, the approach described here permits the value-free (i.e., statistical) comparison of scientists working in distinct areas of science.Comment: 11 pages, 8 figures, 4 table

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio

    Numerical Study of Order in a Gauge Glass Model

    Full text link
    The XY model with quenched random phase shifts is studied by a T=0 finite size defect energy scaling method in 2d and 3d. The defect energy is defined by a change in the boundary conditions from those compatible with the true ground state configuration for a given realization of disorder. A numerical technique, which is exact in principle, is used to evaluate this energy and to estimate the stiffness exponent Ξ\theta. This method gives Ξ=−0.36±0.013\theta = -0.36\pm0.013 in 2d and Ξ=+0.31±0.015\theta = +0.31\pm 0.015 in 3d, which are considerably larger than previous estimates, strongly suggesting that the lower critical dimension is less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR
    • 

    corecore