61 research outputs found

    Development of an auditory implant manipulator for minimally invasive surgical insertion of implantable hearing devices

    Get PDF
    Abstract Objective: To present the auditory implant manipulator, a navigation-controlled mechanical and electronic system which enables minimally invasive (‘keyhole') transmastoid access to the tympanic cavity. Materials and methods: The auditory implant manipulator is a miniaturised robotic system with five axes of movement and an integrated drill. It can be mounted on the operating table. We evaluated the surgical work field provided by the system, and the work sequence involved, using an anatomical whole head specimen. Results: The work field provided by the auditory implant manipulator is considerably greater than required for conventional mastoidectomy. The work sequence for a keyhole procedure included pre-operative planning, arrangement of equipment, the procedure itself and post-operative analysis. Conclusion: Although system improvements are necessary, our preliminary results indicate that the auditory implant manipulator has the potential to perform keyhole insertion of implantable hearing device

    Technical note: Rapid image-based field methods improve the quantification of termite mound structures and greenhouse-gas fluxes

    Get PDF
    Termite mounds (TMs) mediate biogeochemical processes with global relevance, such as turnover of the important greenhouse gas methane (CH4). However, the complex internal and external morphology of TMs impede an accurate quantitative description. Here we present two novel field methods, photogrammetry (PG) and cross-sectional image analysis, to quantify TM external and internal mound structure of 29 TMs of three termite species. Photogrammetry was used to measure epigeal volume (VE), surface area (AE) and mound basal area (AB) by reconstructing 3-D models from digital photographs, and compared against a water-displacement method and the conventional approach of approximating TMs by simple geometric shapes. To describe TM internal structure, we introduce TM macro- and micro-porosity (θM and θμ), the volume fractions of macroscopic chambers, and microscopic pores in the wall material, respectively. Macro-porosity was estimated using image analysis of single TM cross sections, and compared against full X-ray computer tomography (CT) scans of 17 TMs. For these TMs we present complete pore fractions to assess species-specific differences in internal structure. The PG method yielded VE nearly identical to a water-displacement method, while approximation of TMs by simple geometric shapes led to errors of 4–200 %. Likewise, using PG substantially improved the accuracy of CH4 emission estimates by 10–50 %. Comprehensive CT scanning revealed that investigated TMs have species-specific ranges of θM and θμ, but similar total porosity. Image analysis of single TM cross sections produced good estimates of θM for species with thick walls and evenly distributed chambers. The new image-based methods allow rapid and accurate quantitative characterisation of TMs to answer ecological, physiological and biogeochemical questions. The PG method should be applied when measuring greenhouse-gas emissions from TMs to avoid large errors from inadequate shape approximations

    Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils

    Get PDF
    Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l−1 against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites

    Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils

    Get PDF
    Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.DATA AVAILABILTY: All amplicon sequencing data, raw metagenomes, metagenomic assemblies, and metagenome-assembled genomes were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive under the BioProject accession no. PRJNA630822. All other study data are included in the article and/or supporting information.An Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) Fellowship, an Australian Antarctic Division grant, a South African National Antarctic Program grant, a National Health & Medical Research Council Emerging Leadership 2 (NHMRC EL2) Fellowship, an Australian Government Research Training Stipend Scholarship, a Monash International Tuition Scholarship, a Monash Postgraduate Publications Award, a South African National Antarctic Programme (SANAP) postdoctoral grant.https://www.pnas.orghj2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Burkholderia cepacia </it>complex (BCC) is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616), KS14 (vB_BceM-KS14) and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511).</p> <p>Results</p> <p>KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the <it>Peduovirinae </it>subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 <it>E+E' </it>translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The <it>lysBC </it>genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an IS<it>Bmu</it>2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations.</p> <p>Conclusions</p> <p>KS5, KS14 and KL3 are the first BCC-specific phages to be identified as P2-like. As KS14 has previously been shown to be active against <it>Burkholderia cenocepacia in vivo</it>, genomic characterization of these phages is a crucial first step in the development of these and similar phages for clinical use against the BCC.</p

    CT radiation dose for computer-assisted endoscopic sinus surgery: dose survey and determination of dose-reduction limits

    No full text
    BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible

    Use of standards in a production environment

    No full text
    corecore